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1. Logic network basics 
1.1 Integral circuits 

Integral circuits (ICs) form the basis both of the electronic industry and of all 
its product applications. The transistor is the atom element of ICs. A single two 
input logic element (LE), named a logic gate, can be formed by three or four 
complementary metal-oxide-semiconductor (CMOS) transistors. The 
digital IC volume is usually measured by the number of equivalent two input logic 
gates. Due to this number, all the ICs are divided to small scale integration ICs 
and to large scale integration (LSI) ICs. The small scale integration circuits 
have the volume of up to hundreds of gates. The standard logic ICs, program-
mable logic arrays (PLAs) and different buffer ICs belong to these circuits. 

A set of LSI circuits consists of microprocessors, microcontrollers, memory 
ICs, application specific integral circuits (ASICs), and application 
specific standard products (ASSPs). The modern LSI circuits can contain up 
to tenths millions of gates. Besides, memory ICs have the volume of up to billions 
of bits. 

In the seventies, the most popular logic ICs were circuits of the series SN74, 
which consisted of up to thousand of different transistor-transistor logic (TTL) 
circuits. In USSR the analogous ICs were circuits of the series K155. Some analo-
gous representatives of this series are widely used now, but they are implemented 
by the modern CMOS transistor technology. In most cases, these ICs are buffers, 
registered buffers, multiplexers, invertors, simplest logic networks (LNs). 

PLAs were designed at the end of seventies on the base of the read only 
memory (ROM) technology. The PLA consists of a set of logic cells. Each of 
them is a multi-input logic element with a trigger on its output. The PLA 
programming means the forming bridges between the data sources and the logic 
element inputs. In PLAs the metal-nitrogenium-oxid-semiconductor (MNOS) 
transistors play the role of bridges, and they are programmed as the similar brid-
ges in the flash memory. Usually the number of logic cells and the data source 
number do not exceed ten and fifty, respectively. Now PLAs are widely used as, so 
called, glue logic circuits, because they "glue" the LSI circuits together in the 
system. 

The microprocessor is the main operational unit of the computer. Its 
functionality is undefined not only by its production but also during its use. It 
depends on user programs and operational systems. The microcontroller has 
the similar properties as the microprocessor has, but its functionality is usually 
fixed strictly in the user device where it is built in. This means that it performs a 
single program, which is usually not exchanged during all its living time. The 
digital signal processing (DSP) processors form a separate subset of 
microcontrollers. Microprocessors are described in the 4-th chapter of this book. 

The memory ICs are divided into random access memories (RAMs) and 
ROMs. These ICs are described in the 2-nd chapter. 

ASIC has its name because of its functionality which is fixed during the design 
and manufacturing processes. Therefore, ASIC implements a single but complex 
function. ASIC examples are modem circuits, hard disc controllers, parts of the 
computer chipset. Because of the increase of circuit design cost, the ASIC manu-
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facturing is worth of the profit when their stocks have more than million of chips.   
ASSPs form a wide set of different devices. Their functionality is less than one 

of microcontrollers but it is enough to be adapted to a set of different applicati-
ons. They are application specific memory ICs, like graphic adapter RAM, flash 
ROM. The microcontrollers with the specific set of peripheral units, for example, 
MP3 player, MPEG encoder, belong to the ASSP set as well. The system which 
contains microprocessor, application specific processors, memory units, periphe-
ral units, etc., coupled in a single chip, is named as the system-on-the-chip 
(SOC). From the designer point of view, the ASSP is an ASIC which is developed 
to satisfy the adaptation possibilities. Complex programmable logic devices 
(CPLDs) and field programmable gate arrays (FPGAs) form the specific 
subsets of ASSPs. 

 The CPLD structure consists of up to tenths of PLAs placed in a single chip, 
and connected through a programmable switch array. Its logic volume is usually 
less than ten thousands of equivalent gates (i.e. two input logic elements).  

The FPGA was invented in eighties as the alternative to the CPLD. The FPGA 
represents the array of 2-6 input logic elements, triggers (registers), and wire 
parts, which are connected together by a set of bridges. These bridges are formed 
by the field effect transistors (FETs), controlled by the special programming 
triggers. The routes of the FPGA netlist are programmed by the exchange of the 
electric field in the FET gates, and this is the root of the FPGA name. Before the 
FPGA operation, the programming bit stream, named configuration, is auto-
matically loaded into FPGA from the outer ROM. This process is named as FPGA 
configuring. Modern FPGAs contain RAM units, hardware multipliers, fast speed 
interfaces, microprocessor cores and other units. Their logic volume reaches ten 
millions of equivalent gates. Sometimes FPGA is a part of another complex ASSP. 

The CPLD and FPGA project designing is cost effective and has the small 
design period. Therefore, it is the alternative to ASIC when the series of produc-
tion of the specific device does not succeed hundred thousands of units. As a 
result, the number of new FPGA and CPLD projects increases, and the number of 
ASIC projects decreases every year. 

Due to the standards, accepted by countries of former USSR, ICs and their 
parts are drawn in the schematic diagrams as rectangles, named the network 
symbols. This symbol has three fields as is shown in Fig.1.1 (a). The left field 
signs the input marks (xx, xy), the right field signs the marks of outputs (xz), and 
the IC function name is placed in the middle (xxx). In the symbol of the simple IC 
the left and/or right field can be absent. Due to standards of western countries, 
the symbol fields are not separated by lines, and additional input-output fields 
can be placed in upper and bottom sides of the symbol.  

If the IC pin serves both as input and as 
output, then its name can be placed in the 
left or right field. In such situation the 
symbol <> (bidirectional) is attached to this 
name. When it is needed, the IC symbol can 
be rotated clockwise to 90º (Fig.1.1 (b)). 

XX 
XY XZ XXX 

 
XX   XY

XXX 
XZa) b) 

R RG 

D      Q
C 
Ec) 

Fig.1.1 
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Some name characters have the common meaning for many ICs, and they are 
described in the Table 1.1. Fig.1.1(c) illustrates the register with inverse reset 
input, direct and inverse output, and loading by the rising edge of the clock signal 
when the enable signal is high.  

Table 1.1  
A - address bus G - generator 

ALU - arithmetic-logic unit MUX - multiplexor 
B - unidirectional or bidirectional bus MPU - multiplier unit 
C - clock input Mn - modulo n arithmetic unit 

CI,CO - carry input, carry output Q - data output, can be bidirectional 
CD - coder _ 

Q, nQ - negated data output 
CPU - central processing unit R - reset input 

CT,CTn - counter, counter modulo n RG - register 
D -  data input, can be bidirectional S - set input 
DC - decoder SHU - shifter unit 
E - enable input SM - summator, adder, subtractor 
F - control input, for function coding T - latch, 1-bit latch register 

GND - signal of the logic '0' (ground) TT -  trigger, flip-flop, 1-bit register 
º - negated input or output (see 

Fig.1.1(c)) 
X/Y - logic network, transfers X to Y 

 rising edge clock input 1 - repeater, OR function - <׀ ,/
(Fig.1.3(a)) 

 falling edge clock input & - AND function (Fig.1.3(c)) - ׀>,\

 - mark of open emitter (drain) 
output 

== - equality function 

 - mark of open collector (source) 
output 

=1, ⊕ - Exclusive OR function 

 - tristate output # - digital function 

 - not logical input or output <n> - mark of the grouped component 
(component is repeated n times) 

Logic elements (LEs) form a component basis of ICs, which is proper to 
the given IC technology. The IC is designed on the base of the component library, 
which is formed by the LEs of different kinds, with different input number, delay 
t, power consumption and space on the chip surface. The quality, consumer 
properties of ICs depend on its technology, component basis, delay t, maximum 
clock period tC, supply voltage V, power consumption P, logic level voltages L0 
and L1, its output buffer loading characteristics, and others parameters.  

In the logic electric circuits bits a 0 and a 1 are represented by two logic 
voltage levels V0 and V1. Sometimes they are represented by low and high 
current level, or positive and negative current. In any case, the low level is 
marked as L, and high level – as H. When V0 = L and V1 = H the IC is named as 
one with the positive logic, and when V0 = H and V1 = L then it is the negative 
logic IC. Below we will consider the positive logic ICs. The working voltage range 
(usually from 0 to V) is divided into three ranges: V-Ht, Lt-0, and Ht-Lt, which are 
illustrated by Fig.1.2. If the signal magnitude is in the range V-Ht (Lt-0) then LE 
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accepts this signal as the bit 1 (0). And if the signal 
magnitude stays in the threshold Ht-Lt then LE can 
recognize it both as 0 and as 1, and LE operates 
unstable. Therefore, such signal magnitude is 
allowed only in the moment of LE switching.  

VI 
V 
Ht 

0,5 
Lt 

0 
 Some buffer circuits have the operation mode in 

which their outputs have the high impedance. Then 
the signal on their outputs is allowed to be in the 
threshold Ht-Lt for a long time, because this opera-
tion is provided to build common busses. For this 
reason the state, when signal is in range Ht-Lt, is 
named as third state (Z-state), and these buffers 
and busses are named as tristate ones. 

Modern ICs often have two or more supply 
voltages. One of them is usually equal to V=3,3 
volts, and is used for feeding the input and output 
buffers. Another voltages are much less (down to 

V=1 volt), and are used to supply the inner circuits. Thus, inner and outer voltage 
logic levels are different ones. The outer voltage logic levels in most of cases obey 
the standard TTL logic levels, i.e. level Ht is 2,4 volts, and level Lt is 0,8 volts. 

The IC speed is derived from the propagation delays t of its LEs and other 
components. In general, these delays depend on the route of the signal 
propagation, and on the capacitance at the LE outputs. This capacitance in CMOS 
circuits is proportional to the number of LE inputs, which are attached to this LE 
output. This number is named as the LE fanout.  

Sometimes the delay t0.1 of propagation of transition from L to H is different 
from the delay t1.0 for transition from H to L. As a rule, these delays are shorter 
than propagation delay of generating the transition from Z to H or from Z to L 
and visa versa at the LE output (see the waveform VZ in Fig.1.2). Besides, all the 
delays become shorter with temperature and power voltage increase. As a result, 
each LE has the delay function which depends on the fanout, transition form, vol-
tage and temperature. In the computer-aided design (CAD)-tools the LE lib-
raries usually contain such delay functions, which are taken into account during 
the logic synthesis. In the modern ICs, the propagation delays in wires can be 
higher then delays of LE switching. Therefore, by the design of such ICs the 
capacitance and inductance of the wires, which cause the delay, are taken into 
account as well. In simple calculations the LE delay can be considered as that that 
is equal to a constant for all the similar LEs, and is equal to the maximum delay 
over all possible delays.    

The power consumption of modern ICs is caused, in general, by the 
switching processes in them. Some power consumption is forced by the current 
leakage, but it is much less for CMOS circuits. The switching is the effect of 
charging and discharging of the LE capacitances, and it can be estimated by the 
formula:  

t 

t

t0.1 t1.0 
V

V 
Ht 

0,5 
Lt 

0  

t 

t0.Z tZ.0 
VZ  

Ht 

0,5 
Lt 

0 
Fig.1.2 
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P = CL V 2 ES fC /2,                                        (1) 

where CL is the physical capacitance at the LE output, ES is the average number of 
output transitions per clock cycle (the switching activity, it is typically 20% in 
most designs), and fC is the clock frequency. Due to the formula (1), reduction of 
any of its factors will result in a lower power consumption of the IC. The 
reduction of the supply voltage V is the most attractive, because it is in a 
quadratic relation to power. But this has a negative impact on the speed of the 
design because the voltage reduction increases the delay t of LEs. CL is the LE 
loading, which is proportional to LE fanout and wire lengths. CL decreasing is 
more effective because it decreases the LE delay, and thus increases the design 
throughput. fC is derived from the maximum delay in the chains of LEs which 
route the logic signals from the source trigger to the destination trigger, and 
therefore, it increases by the minimizing such chains.  

The IC design strategy is directed to minimize the LE number, its fanout, its 
input number, and its number in logic chains, considering the given component 
library. Therefore, the IC logic synthesis is complex task with respect to a set of 
contradiction goals like hardware and power minimization, and speed maximiza-
tion. This task is implemented now automatically in many modern CAD-systems. 
But to achieve success, the designer has to know excellently the rules and laws of 
the logic synthesis to be able to direct this process. Moreover, often the excellent 
IC projects are designed by hand, because the automatic results occur to be bad. 
In the following chapters we will look into the logic design processes.    

1.2 Boolean algebra 

Table 1.3 
X1, X2 X1·X2 X1∨X2 =1 

0 0 0 0 0 
0 1 0 

The LE is the circuit which operation can be 
described by the simple combinational logic 
function or the Boolean function (BF). This 
function can have only two meanings, or 
significances: 0 and 1 or false and true. The BF 
arguments also have only two such meanings.  

Table 1.2. 
X f0 f1 f2 f3
0 0 0 1 1 
1 0 1 0 1 

1 1 
1 0 0 1 1 
1 1 1 1 0 

 

The simplest BF Y=f(X) is given by its 
significances by X=0 and X=1. In general, there 
are four such functions, which are given in the 
truth Table 1.2. BFs  f0 and f3 are constants 0 and 
1. Significances of f1 are equal to X, therefore LE which implements f1 is named as 
buffer. Its graphical symbol is illustrated by Fig.1.3 (a). Here in the left side is 
the symbol due to former Soviet Union countries standards, or to IEEE standard. 
In the right side is the symbol, which is adopted in western countries. BF f2 
exchanges 0 to 1, and 1 to 0. Such transform is named as inversion, marked 
as X , and spelled as not X. LE which implements X is named as an invertor, or 
a NOT gate (see Fig.1.3 (b)). To define the two argument BF f(X1,X2) one has to 
give its significances on four argument sets (X1,X2), which is illustrated by the 
Table 1.3. Such a task can be implemented by one of 16 ways. And 16 different 
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BFs can be distinguished. But practically, the following six BFs are used: X1·X2 
(AND function, or conjunction or '&'), X1∨X2 (OR, disjunction, or '1'), 
Exclusive OR (shortly EXOR, or '=1'), and their negations: 21 XX ⋅  (Not AND, 

shortly NAND), 21 XX ∨ (Not OR, shortly NOR) and Exclusive Not OR (shortly 

XNOR, or '==' that means equality). LEs or gates, which implement these BFs, 
have the proper names (see Fig.1.3(c-h)). 

In most of cases of analysis or synthesis of logic networks the functions AND, 
OR, and NOT are used. These functions form, so called, Boolean algebra. 
Besides, AND, OR functions can have large number of arguments. From the Table 
1.3, one can derive the following Boolean algebra equalities and identities: 

X∨0 = X,         X∨1 = 1,      X∨X = X, 
X·0  = 0,           X·1 = X,       X·X = X, 

X∨Y = Y∨X,     X·Y =  Y·X,                   (2) 
(X∨Y)∨Z = X∨(Y∨Z),   (X·Y)·Z = X·(Y·Z), 

YXYXX ∨=⋅∨ , XYXYX =⋅∨⋅ , 
X·(Y∨Z)  =  (X·Y)∨(X·Z),  YXYX ⋅=∨ , 

XX = ,  1=∨ XX , 0=X⋅X ,  10 , = 0=1 ,  

YXYX ∨=⋅ , YXYX ⋅=∨ . 

Here and below the higher priority of AND 
(point) operation is considered. 

The number of different BFs is derived from 

the argument number n, and is equal to , where 
2

n22
n is the number of different argument sets. When n=3 we can get 256 BFs. But it 

is not necessary to build a set of 256 LEs to select from it the needed function of 3 
arguments. It is enough to have a set of gates of AND, OR, NOT-type. The fact is 
that any BF is represented by the superposition of these functions using the 
following equation, named as a sum-of-product form: 

1 
a) 

1 
b) 

& 

 c) 

1 

 d) 

& 

 e) 

1 

 f) 

=1
 h) 

=1 

 g) 

f(X1,X2,…,Xn) = Vf(α1,α2,…,αn)·X1
α1 ·X2

α2 … Xn
αn,              (3) 

where the OR function is given on all the sets  (α1,α2,…,αn), and 
 
 

Really,                     

 

As a result, the function, named the term, is equal to X1
α1 ·X2

α2 … Xn
αn = 1 only 

if Xi = αi for all values of i. And in this situation 

f(α1,α2,…,αn) = 0∨0…f(α1,α2,…,αn)·1∨0…0∨0, 

Xi
αi    = 

Xi, when α = 1;  
X⎯i, when α = 0; i=(1,…,n) . 

X
α   = 

1  when X = α ;   
0  when X ≠ α .   

 

Fig.1.3 
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i.e. the left part of the equation (3) is equal to the right one. 
Consider an example. There are three lighting switches in 

the room. The goal is to design the logic network which 
provides switching on and off by a single switch not to touch 
the other switches. Consider one state of the switch is zero (0), 
and another one is one (1). Because there are three switches, 
the network must implement the logic function of three argu-
ments. Let lighting is off when all the switches are in the state 
0, i.e. the switch state is 000. Then a single exchange of any 
switch forces lighting on. Therefore, BF has to be equal to 1 on 
the set of states 001, 010, and 100. Any exchange of these states 
forces lighting off. Finally, when switches are in the states 011, 101, 110 then BF 
has to be a 0, i.e. the light is off. The next exchange of any switch makes lighting 
on, which gives f(1,1,1)=1. The meanings of the BF f are shown in the Table 1.4. 

Table 1.4 
f X1 X2 X3

0 0 0 0 
0 0 1 1 
0 1 0 1 
0 1 1 0 
1 0 0 1 
1 0 1 0 
1 1 0 0 
1 1 1 1 

 

Then we represent the derived BF in the form (3): 

 f(X1,X2,X3) = f(0,0,0)·X
1
0     X

2
0 X

3
0       ∨f(0,0,1)·X

1
0 X

2
0  X

3
1  ∨   f(0,1,0)·X

1
0 X

2
1X

3
0        ∨f(0,1,1)·X

1
0 X

2
1 X

3
1∨ 

   ∨ f(1,0,0)·X
1
1X

2
0 X

3
0     ∨ f(1,0,1)·X

1
1X

2
0  X

3
1     ∨f(0,0,0)·X

1
0 X

2
0 X

3
0       ∨ f(1,1,1)·X

1
1X

2
1 X

3
1    = 

= 0·X⎯
1
 X⎯  

2
 X⎯  

3
∨1·X⎯  

1
 X⎯  

2
X

3
∨1·X⎯  

1
 X

2
 X⎯  

3
∨0·X⎯ 

1
 X

2
 X

3
∨1·X

1
X⎯  

2
 X⎯  

3
∨0·X

1
 X⎯  

2
X

3
∨ 

∨0·X
1
X

2
X⎯  

3
∨1·X

1
X

2
X

3     
=   X⎯  

1
· X⎯  

2
· X  

3
∨ X⎯  

1
· X

2
· X⎯  

3
∨ X  

1
· X⎯     

2
· X⎯  

3
∨ X

1
·X

2
·X

3
.

The network, which implements this BF, is 
shown in Fig.1.4 (a). It consists of three NOT gates 
for negating the input signals, four AND gates, 
and a single OR gate. This network can be simpli-
fied by the use of the Exclusive OR gates. The 
analysis of the Table 1.4 shows that this BF is the 
sum modulo 2 of input variables. Therefore, this 
function can be implemented by two 2-input gates, 
as it is shown in Fig.1.4 (b). 

b) 

a) 

1

 X1 

 

 X2 

 

 X3

&

&

&

1

1

1 f 

=1 =1
 X1

X2

 X3

 f(X1,X2,X3) 

Fig.1.4 

&

The sum-of-product form (3), named as 
AND/OR form, is not unique method of deriving 

BFs. Really, using the relations XX = , and 

YXYX ⋅=∨ for the previous example, we can get 
the following forms 

=⋅⋅⋅= 321321321321321 ),,( XXXXXXXXXXXXXXXf         (AND-NOT/AND-NOT) 

=∨∨⋅∨∨⋅∨∨⋅∨∨= 321321321321 XXXXXXXXXXXX       (OR/AND-NOT)    (4) 

.XXXXXXXXXXXX 321321321321 ∨∨∨∨∨∨∨∨∨∨∨=   (OR-NOT/OR) 

Both the function and its inversion can be represented by the form AND/OR. 
This gives another four forms: 



1.3  Combinat ional  logic  networks   10 

 

=∨∨∨= 321321321321321 ),,( XXXXXXXXXXXXXXXf             (AND/OR-NOT) 

=⋅⋅⋅= 321321321321 XXXXXXXXXXXX                    (AND-NOT/AND) 

=∨∨⋅∨∨⋅∨∨⋅∨∨= )()()()( 321321321321 XXXXXXXXXXXX      (OR/AND)          (5) 

.XXXXXXXXXXXX 321321321321 ∨∨⋅∨∨⋅∨∨⋅∨∨=       (OR-NOT/OR-NOT) 

Each of the relations (3), (4), (5) is called as the normal form of the BF 
representation. They can be useful by designing of LNs, based on the concrete 
gate library. 

Many transformations of BF can be usefully interpreted when BF is graphi-

cally represented. In the geometrical sense a set (X1
α1 , X2

α2 ,…, Xn
αn) can be repre-

sented by the vector, which forms a point in the n-dimensional space. All 2n 
combinations of vectors form the nodes of the n-dimensional cube. Marking the 
nodes, where BF is equal to 1, we derive the graphical representation of BF. These 
marked nodes represent the terms of the equation (3). In Fig.1.5 (a) the 3-

dimensional cube of the function (4) is 
drawn. The number of variables Xi, which 
exchange its coordinate when traversing 
from one node to another one, is named as 
the distance between these nodes. Looking 
at Fig.1.5, one can to prove that the distan-
ce between all couples of the nodes is 
equal to 2. A single node of the n-dimen-

sional cube, which BF is equal to one, is named as a 0-cube. Two 0-cubes, which 
are connected by an edge, form the 1-cube. This means that in the 1-cube the 
distance between two nodes is equal to a 1, and two respective terms are different 
in a single variable. Four nodes, which form the square plane, belong to the 2-
cube, and visa versa. Often the cubes are named as prime implicants, because 
they represent the OR function of terms (implication), which can be reduced. 

000 001 

011 
010 

100 
101 

111 110 

BFs are often represented graphically by Karnaugh maps (KM) or Veitch 
diagrams (VD). KM is built by unfolding the n-dimensional cube to the plane. 
The cube nodes are represented by squares of the KM, which coordinates are 
equal to the coordinates of the cube nodes. To simplify the representation, the 
rows and columns of KM, where the coordinate is equal to 1, are marked by the 
bold line. KM of BF (4) is shown in Fig.1.5 (b). Due to the fact, that selecting the 
k-cubes minimizes BF, and these cubes are easily found in KM, KM is often used 
in the LN synthesis. Such a process is shown below. 

1.3 Combinational logic networks 

The operation algorithm for any digital network with n inputs and m 
outputs can be described by m Boolean equations Yi = fi (X1, X2,…, Xn, Z1,Z2,…,Zk), 
(i=1,…,m), where Yi, Xj are output and input variables (j=1,…,n), Zt are variables 
which represent the inner state of the network (j=1,…,n). This is the state of some 

a) b) 
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memory elements, which usually are triggers. Such a 
network can be represented by two parts (see Fig.1.6). 
One of them consists of triggers (T). Another one contains 
LEs, which are connected into the combinational logic 
network (LN). Both parts interact through variables Zt, 
which characterize the trigger states, and variables Di, 

which are the trigger stimulating functions. 
The main feature of LN consists in the following. 

When all the transition processes are finished in the inner 
LEs, then the output signals depend only on the input 
signals, and the inner signal states are not needed to 
derive these output signals. Therefore, equivalent LNs can have different inner 
structure. The goal of the logic synthesis is to minimize the LN complexity, and 
maximize its speed, selecting its optimum inner structure.  

X1 
… 
Xn 

Z1 

Z2 

…
Zk

Y1
… 
Ym

D1 

D2 

… 
D

 
 

LN 

To develop LN, based on the given LE library, BF has to be represented by the 
superposition of LE functions. These LE functions are named as operators, and 
their superposition is the operator representation of BF. Such representation 
process is named as the mapping of BF into LN. As the base BF for the logic 
synthesis, the minimum normal form is selected. The minimum normal form 
is one of eight BFs (3), (4), (5), which has the minimum number of input signal 
symbols and their negations.  

Consider the example of the logic synthesis of the carry network of an adder 
(Fig.1.7 (a)). The carry function CO is equal to a 1 if two or more arguments are 
equal to a 1. KM of this BF is shown in Fig.1.7 (b).  

The 1-cube of n variables, which was mentioned in the previous chapter, has 
the property, that it can be represented by the AND function of n-1 variables. 
Three 1-cubes are selected in the KM in Fig.1.7 (b). One of them is 
((C,X,Y),(C,X,Ȳ)). Due to the fact that the distance between terms in the cube is 
equal to one, the conjunction of them is CXY∨CXȲ = CX(Y∨Ȳ) = CX·1 = CX. As a 
result, the "gluing" of terms occurs, and BF is reduced.  

By BF minimizing, its KM is fully covered by 0-,1-,…k- cubes, as it is shown in 
Fig.1.7 (b). The conjunctions of terms, representing those (prime implicants) are 
reduced as shown above. The resulting BF is the conjunction of all reduced prime 
implicants. In our example it is CO = CX∨CY∨XY. This is the first minimum 
normal form. Another 7 minimum normal forms can be derived as in (4), (5): 

.YXYCXCYXYCXCYXYCXC

YXYCXCYXYCXCYXYCXCXYCYCXC

⋅⋅=∨⋅∨⋅∨=∨∨∨∨∨=

=∨∨=∨∨∨∨∨=∨∨∨=⋅⋅=

)()()(

))()((O  

It should be mentioned that four last forms are derived when 1-cubes are 
selected for the inversed terms, or for zeroed squares of the KM.  

Consider the LE library that consists of only 2-input AND-NOT gates, or 
shortly, 2NAND gates. Then we select the AND-NOT/AND-NOT minimum 
normal form. We have to design the 3-input LN of the outer stage. Such a LN can 

k

T2
… 

Tk

T1

Fig.1.6 
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be implemented due to the formula: ZXYXYZ = . The resulting operator 

representation is CO = XYCYCX ⋅⋅ , and it is implemented on 6 gates (Fig.1.7(c)). 
To minimize the LN some variables in the formula can be put out of brackets. 

For example, CX∨CY∨XY = C(X∨Y)∨XY = XYYXCXYYXC ⋅⋅=∨⋅ . The 
resulting LN is shown in Fig.1.7 (d).  

BF can be optimized by the method of decomposing by a variable. This meth-
od is based on the equation f (X1, X2,…, Xn) = X̄ 1⋅f (0, X2,…, Xn)∨X1⋅f (1, X2,…, Xn). 
Here BFs with variable 0 and 1 are derived from respective halves of KM. In our 
example CO = C̄ ·CO(0,X,Y)∨C·CO(1,X,Y) = C̄ XY∨C(X∨Y) = C̄ XY∨CXY∨C(X∨Y) = 

(C̄∨C)XY∨C(X∨Y) = XY∨C(X∨Y) = YXCXYYXCXY ⋅⋅=⋅∨ , i.e. we have 
derived the same LN as is shown in Fig.1.7 (d). 

The optimization process is finished by the selection of better LN due to a set 
of criteria. As the simplest complexity criteron, the Quine complexity can be 
selected which is equal to the amount of all the gate inputs. This criterion was 
true for small scale ICs when their cost was proportional to their pin number. 
Now in the ASIC design each LE from the library has its area, which it occupies 
on the chip surface. Then the LN complexity is equal to the sum of all the LE 
areas. When LN is configured in FPGA then all LEs are mapped into 4-input look-
up tables (LUTs) or logic cells (LCs). Then the LN complexity is equal to the 
number of used LUTs or LCs. In any case, there is the common practice to 
measure the complexity in the number of 2-input equivalent gates.  

Comparing derived LNs in Fig.1.7 (c,d), we can see that their complexities are 
equal to 6 gates. But the complexity of the second LN is something less, because it 
contains more NOT gates. This LN can be used as the subnetwork of some 
complex LN, in which the variable sources and its invertors can be common for 
the whole LN. In this situation these NOT gates stay on the LN inputs. Therefore, 
they would not be considered. 

The LN speed can be estimated as the number of gate stages in it, which is 
equal to the number of gates in the longest path from any input to any output of 
LN. Because the delay of CMOS circuits usually does not depend on the logic 
signal levels then we can not consider the input signal levels in the speed 
estimation. Comparing LNs in Fig.1.7 (c,d) shows that both of them have the 
delay of 4 gates. For real ICs the delay of a single gate is equal to 0,1 ns. Therefore, 
the delay of synthesized LNs is equal to 0,4 ns.  

Due to the formula (1), the LN power consumption by clock frequency fC, and 
voltage V can be calculated on the base of gate fanouts and of average switching 

a) 
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activity ES. When ES is estimated to be 50%, then the power consumption is 
proportional to the sum of input numbers of all gates. For examples in 
Fig.1.7(c,d) these figures are equal to each other. More precisely the power 
consumption is calculated by simulation of the LN model with the real input data 
sets. Then the figure ES is calculated precisely for each gate. 

In many cases, BF is not defined on some subsets of input data. Such BF is 
called as partially defined BF. For example, in Fig.1.6, the trigger stimulating 
functions Di would not be defined for the states which never occur in the network. 
They are called as prohibited states. Taking in consideration this situation, LN 
with minimized hardware can be derived. Consider the design of the LN for 
encoding of binary decimal code (BCD) to 7-segment LED display code. Such 
display has to view digits from 0 to 9, and another 6 possible combinations do not 
occur. The KM of BF for coding the third LED switching is shown in Fig.1.8 (a). 
Here unused subsets are marked by X sign and are "don't care" conditions.  

The "don't care" conditions can be specified as either a 0 or a 1. Consider all of 
them are equal to a 0. Then we can select the proper cubes (Fig.1.8 (b)), and 
derive the following minimum normal form: Y = Ā D∨Ā BC∨B̄ C̄ D. Note that KM 
is the unfolded 4-dimensional cube, and therefore, on KM the cut ellipses cover a 
single 1-cube. It can be proven that the distance between its terms is equal to 1. 
Here four squares, covered by the circle, form the 2-cube, which is reduced to 
Ā D. We can assign the undefined states more speculative, to get the cubes of 
higher order (Fig.1.8(c)). The derived BF is Y=D∨BC̄ , and is much simpler than 
the previous one. Its operator representation in the 2NAND operators is 

CBDY ⋅= . In such a manner, the inverse BF can be derived from the KM in 

Fig.1.8 (d): =⋅∨⋅= DCDBY  ( )=∨CBD  CBD ⋅ , i.e. we get the same representa-

tion. The resulting LN is shown in Fig.1.8 (e). 
In the CAD tools for the logic synthesis the BF optimization and its mapping 

into LN is made automatically without the designer interference. But many CAD 
tools can optimize complex BFs of more than 8-10 variables not optimally. It is 
explained by the fact that the logic optimization is the heavy combinatorial 
process, and for the affordable period of time the optimum solution could not be 
found. In this situation, the hand-made BF optimization may give better results. 
Besides, only selected CAD tools provide optimization of partially defined BFs 
(with "don't cares"). Therefore, the experienced designer must be able to optimize 
complex BFs by hand.  
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1.4 Triggers 

A trigger is a logic element that can hold one of N stable states. The most 
widely used trigger has N=2 states, and is named as binary trigger. The trigger is 
said to store the figure 0 (or 1) if it is in the state zero (one). The triggers are 
distinguished as latches and flip-flops. A latch is a trigger that can follow data 
variations and transfer them to an output line. It is characterized by two main 
properties: — it is transparent in that the output Qt follows changes at the least 
part of the time t; — the storage is achieved using a bistable circuit, in which 

either Q=0 or Q=1 can be held.      
An SR latch has two inputs that are labeled S and R. 

This is associated with the quite general terminology "set" 
and "reset", that means that we force Q to a value 1 or 0. An 
SR latch can be built using two cross-coupled NAND gates, 
as shown in Fig.1.9 (a), and its symbol is shown in the Fig.1.9 
(b). The algorithm of this latch is conveniently represented 

by the Table 1.5, which is named as the function 
table. Here the symbol Qt+1 means the latch state at 
the moment of time t+1, i.e. after the switching 
process is finished, which is caused by the input 
signals, that were active at the moment t. From the 

latch equations SQQ ⋅=  and RQQ ⋅=  (see the 

Table 1.5) the following equalities are derived: 

QQQ =⋅= 1  and QQQ =⋅= 1 , which are true for 

any Q. Therefore, when R̄ = S̄ = 1 the state Qt+1 is 
fully derived from the previous state Qt. The signal 0 
at the output Q forces the signal 1 at the output Q̄, 
which respectively keeps the signal Q=0 when it 
enters the input of NAND gate (see Fig.1.9). When 

R̄=0 and S̄=1 then the output signals are Q=0 and Q̄=1, which stay stable after 
input signal exchange to R̄ =S̄=1, because mentioned signals keep themselves. 
But when R̄=S̄=0 the output signals are Q=1 and Q̄=1, which after the event 
R̄=S̄=1 are switched into one of possible states Q=0 and Q̄=1, or Q=1 and Q̄=0. 
The signals R̄=S̄=0 cannot be simultaneously, because they force the indefinite 
latch operation. 

Table 1.5 
R̄ S̄ Qt+1 Q̄t+1

0 0 ? ? 
0 1 0 1 
1 0 1 0 
1 1 Qt Q̄t

 

The similar latch is built on the NOR gates, which is distinguished from the 
previous one by the direct inputs R and S (Fig.1.10).  

In a complex digital system the designer must carefully control the flow of 
data to insure that the proper information is available to each block when it is 
needed. The common way to control the data movement within a network is to 
synchronize the system operation using a well-defined reference such as a clock 
signal. A clock is a control signal that periodically makes a transition from a 0 to 
a 1 and then back to a 0. The clock is usually denoted as C or CLK. Using a clock 

b) 

TR
 
S

Fig.1.9 

& 

S̄ 

 

  

R̄ 

a) 

& Q 

 

Q̄ 

Q 
 

Q̄ 

S̄ 
 

R̄ 

1 

S 

 

  

R 

TR
 
S

Fig.1.10 

1 Q 

 

Q̄ 

Q 
 

Q̄ 

S 
 

R 



1.4  Tr iggers   

 

15 

signal to control the operation of a trigger 
provides us with the ability to dictate the times 
when data values can be stored in the device. 
This allows for the design of complex digital 
networks in which the data is moved in a 
synchronous manner. 

The network diagram of a clocked SR latch 
and its symbol are shown in Fig.1.11. Compa-
ring this with Fig.1.9, we see that C is ANDed 
with both the R and S inputs. When C=1 the 
latch is operated as SR latch, accepting the in-
formation on the inputs R and S. When C=0 the 
latch falls in the storing mode, in which the R and S inputs do not infer its state. 

Two inputs R and S make the latch control complex, and afford two 
interconnection wires. This makes the disadvantage of the SR latch, which is 
absent in the D latch. A clocked D latch may be created in the same manner, as 
illustrated in Fig.1.12. As with the clocked SR latch above, the input is only active 
when C=1. The clocked D latch is often called a transparent latch due to its 
behavior during this time. Clocked latches are useful in synchronizing the data 
flow through a complex system. They also give more meaning to the name "latch" 
as they can be visualized as circuits that "latch on to" data when C=0. 

The latches are never used as the triggers in the digital networks with the 
feedback like in Fig.1.6. For instance (see Fig.1.6), in some situation for the signal 
Z1=0, LN generates the signal D1=1, and for the signal Z1=1, LN gives D1=0. Then 
when latch T1 is opened by the clock, the high frequency oscillations occur due to 
the feedback chain, which traverses through the latch and LN.     

To prevent such a situation, the two staged triggers are used, named flip-
flops (FFs). The simplest way to design the FF is cascading two clocked SR 
latches as it is shown in Fig.1.13 (a). The first latch is designated as the master 
circuit and is responsible for securing the input data R or S. The second latch acts 
as the slave. It is used to hold the value of the data that it receives from the 
master. The master and the slave circuits are controlled by opposite phases of the 
clock C. Since the master latch has C applied to it, it accepts inputs when C=1. 
The slave, on the other hand, uses C̄ for timing, so that it allows for changes in the 
inputs when C=0.  

The value, that is transferred to the slave circuit (and hence to the output Q) is 
the value, that is in the master latch, when the clock makes a transition from C= 1 
to C=0. For this reason, this master-slave 
configuration is classified as being a falling 
edge-sensitive device. And such a trigger is 
the edge-triggered FF. In the FF symbol on 
the Fig.1.13 (b) such edge sensitive input is 
designated as '\'. The rising edge sensitive 
input is designated as '/'. Alternative 
designations for rising edge and falling edge 
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clock inputs are ׀> and <׀  , respectively. Two letters T in the 
symbol associate with two latches in FF. 

When the master latch is of D-type, then we derive the D 
flip-flop. The JK flip-flop is distinguished by the feedback 
in the master-slave circuit (see Fig.1.14). It behaves as the 
original SR flip-flop but when J=K=1 then FF exchanges its 
state to the opposite one, i.e. Qt+1 = Q̄t. JK-type FF used to 
be dominant in designs that were based on small scale 

integration ICs, but can be useful now in some special networks.  
The toggle flip-flop is a circuit that has a single input T. The operation of 

this FF is exactly as implied by its name: the output toggles whenever T changes 
from 0 to 1. When toggle FF has the edge sensitive clock input then its output 
toggles with each clock rising edge when T=1. Such FF is derived from JK-type FF 
when inputs J and K are coupled together. T flip-flop is a relatively special LE 
that does not have the versatility of FFs discussed above but may be useful, for 
example, in the counters. 

FFs as well as latches are never designed as the networks of gates, because of 
unpredictable behavior of the derived circuits. This is explained by the fact that in 
modern circuits the delays in wires can supersede the gate delays. As a result, for 
example, the prohibited condition R=S=1 can occur in unexpected moments. 
Latches and FFs are usually designed as the transistor circuits when the proper 
technology gate library is formed. By this process, the complex problem of signal 
races both in gates and in wires between them is solved.  

DFFs are most widely used. Additionally, they 
usually have S or R input, or both of them for asyn-
chronous set or reset to the initial state. Very often 
DFFs have the enable input CE, which enables the FF 
clock sensitivity. Another FF types are designed on 
DFFs as on the component. Consider the design of 
JKFF. Its function table is the Table 1.6. Here the 
arrow means the clock rising edge, the letter X means 
the “don't care” state. The analysis of this table shows 

that LN is needed which is attached 
to the input D of the FF. The 
respective KM is shown in Fig.1.15 
(a), and the resulting FF network is 
illustrated by Fig.1.15 (b). Fig.1.16 
illustrates the T-type FF based on 
D-trigger. In the following chapters 

the main components of logic networks are described, 
which are based on logic gates and triggers. 
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1.5 Decoders 

The combinational network, which implements a set of BFs: 

Qj = A1
a1

A2   
a2

 … An
an

 ,                               (6) 

is named as decoder (DC), where j = 0,…,2n-1, Ai is the 
input variable, (i=1,…,n), ai is the i-th digit of the binary 
representation of j.  

From (6) one can see that to develop the DC network 
the AND gates are needed. Consider the p-input AND 
gates, and the variables Ai and Ā i are generated out of 
DC. If p≥n then the DC design is simple: this DC consists 
of 2n gates (see Fig.1.17), each of them implements one 
BF (6).  If p<n then function Qj has to be formed by divi-
ding Ai to the sets of up to p variables. LN in which the 
conjunctions are implemented in parallel has the highest speed. In Fig.1.18 (a) 
the DC network is drawn, which has the maximum speed, and which implements 
the 16-input AND function on the 3-input gates. Its delay is equal to 3t, where t is 
the gate delay. The number of gates is equal to 8. In general, 
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t(n,p) = [logpn]t ,  L(n,p) = [(n – 1)/(p – 1)],                               (7)  

where t(n,p) and L(n,p) are time delay and gate number of the LN, respectively, 
[x] means the nearest higher natural number of x. The whole DC network for 2n 
outputs contains  2n[(n – 1)/(p – 1)] of p-input gates. But such LN has large 
hardware volume. Firstly, it contains up to 2n conjunction gates, in this example, 
say A1A2A3. Really, only eight such conjunctions are needed. Therefore, it would 
be better to take off the unnecessary gates. In Fig.1.18(a) the figures above the 
gate symbols  show how many gates are really needed. Secondly, it can occur that 
some gate inputs in the last stages are not engaged (Fig.1.18 (a)). It would be 
better to divide the input variables into the sets to minimize the free gate inputs, 
as it is shown in Fig.1.18 (b).  
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The optimum solution of DC network (according to both speed and hardware 
volume) has the structure, represented in Fig.1.18(c). Its complexity is derived 
from the formula 

∑ =+= p
i i

n ,p,nCp,nC 1 )(2)(                                             (8) 

where ni is the natural number, such that . The formula (8) achieves 

the minimum, when n

nnp
i i =∑ =1

i has the value that is nearest to the value of n/p. Getting 
the optimum division of input digits to p groups, a set of decoders was designed. 
Their parameters are shown in the Table 1.6.  

Table 1.6 
n 3 4 5 6 7 8 9 10 11 
ni 3 2,1,1 2,2,1 2,2,2 3,2,2 3,3,2 3,3,3 3,3(2,2,1) 3,(2,1,1),(2,1,1) 

C(n,3) 8 20 40 76 144 276 536 1060 2096 

Consider ni ≈ n/p then the equation (8) can be unfolded:  

≈)( p,nC ∑ = =+ p
i

n p,p/nC1 )(2 =+ )(2 p,p/npCn ∑ =++ p
i

p/nn p,p/nCpp 1
2 )(22 … 

Then we derive the resulting equation: 

C(n,p) ≈ 2n +p2n/p  + p22n/p
2
 + p32n/p

3
 +…                               (9)  

Consider n=11 and p=3, then due to three first items of the formula (9) 
C(11,3) =  2107, i.e. it gives rather good estimation, comparing to the Table 1.6. If 
the DC output number is represented as M=2n then the equation (9) is represen-
ted in another form 

C(n,p) ≈ ...MpMpM pp +++
22   .                                   (10) 

In many cases, it is useful to estimate the DC complexity as the sum of LE 
inputs. Such estimation is equal to the formula (10) multiplied by p: 

 C(n,p) ≈ ...MppM p +⋅+ 2   .                                        (11) 

The analysis of the formulas (7) and (11) shows that DC on 2-input LEs has 
the minimum hardware volume and maximum time delay, and DC on n-input 
LEs has the large hardware volume and the small time delay. 

At present, small DCs with M<100 are implemented on PLA and CPLD. When 
designing ASIC, DC network is usually got from the library or it is generated by 
the special subprogram, or is synthesized from the behavioral description. The 
LEs of FPGA usually have the limited number of inputs (mostly 4). Therefore, to 
develop DCs in FPGA the designer must take into consideration the methods of 
DC network building. 
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1.5 Multiplexers 

The combinational network which has up to 2n data inputs, one data output, 
and n-bit wide control input, which selects one of the data input, is usually named 
as an multiplexor. Consider the 22 = 4 – input multiplexor. Then its BF is 

Y = E·(D0 ·X⎯  1 · X⎯   0 ∨ D1·X⎯  1 · X0∨ D2· X   1· X⎯  0 ∨ D3·X1·X0),   (12) 
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where E is the enable signal, Di is the input data,  X1, X0  
are digits of the selected data position. Comparing this 
equation and equation (6), one can find that multiplexor 
is the combination of DC, and AND/OR networks, which 
is illustrated by Fig.1.19. 

The standard 2- and 4- input multiplexers are usually 
in the project libraries. The large multiplexers are desig-
ned on the base of them as the multiplexor trees. The 
example of the 6-input multiplexor, based on 2-
input multiplexers, is shown in Fig.1.20.  

In different projects the multiplexers are widely 
used to provide the sharing of the computational 
resources among different data sources. For exam-
ple, they are inserted at the inputs of ALUs to put 
the input dates from different directions. 

In ASICs the tri-state busses are implemented 
rarely because of their high cost and low reliability. 
Therefore, the common busses are made on the 
multiplexor basis. In this situation the output of the n-input multiplexor is 
connected to all the bus destinations (for example, processor units – PUs). And 
the output of the j-th source is connected to the j-th input of the multiplexor, 
where j≤n (see Fig.1.21).  The bus address to the multiplexor and the enable 
signals to destinations are formed by the arbiter network, which is not shown in 
Fig.1.21. As the simplest case of the common bus, consider the registered memory 
in which all the register outputs are connected together through the common 
multiplexor. 

In more complex situations, any source can be connected to any destination. 
Then up to n·n multiplexers are needed, as it is shown in Fig.1.22. 
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1.6 Encoders 

Table 1.8  
D9  – D 0 A3 A2 A1 A0 P 

0000000001 0 0 0 0 1 
000000001x 0 0 0 1 1 
00000001xx 0 0 1 0 1 
0000001xxx 0 0 1 1 1 
000001xxxx 0 1 0 0 1 
00001xxxxx 0 1 0 1 1 
0001xxxxxx 0 1 1 0 1 
001xxxxxxx 0 1 1 1 1 
01xxxxxxxx 1 0 0 0 1 
1xxxxxxxxx 1 0 0 1 1 
0000000000  x x x x 0 

 

The encoder is a combinational net-
work, which transforms the input data into 
the position of the most significant bit of 
this data. The example of the encoder is LN, 
which transforms the signals from the deci-
mal button array to the binary-decimal 
code (BCD) A3A2A1A0, which represent the 
pushed button from 0 to 9 (see the Table 
1.7). One of the possible LNs of such an 
encoder is shown in Fig.1.23. But when two 
buttons are pressed simultaneously then LN 
generates the incorrect code. For example, if 
D5=D6=1 then A3A2A1A0=0111, that repre-

sents the signal D7=1. Besides, it is impossible to 
recognize the pressed button, for example, the 
button 0.  

To remove these disadvantages it is necessary 
to synthesize the priority encoder. Such 
encoder always forms the code of a single pressed 
button, for instance, more significant one. The 
Table 1.8 is the truth table of such an encoder. 
When any button is pressed then the output bit 
P=1. The proper Boolean equations are 

,DDDDDDDDDA
,DDDDDDDDA

DDDDDDA,DDA

)))(((
))(())(((

))((

1234567890

234567891

4567892893

∨∨∨∨=

∨∨∨∨∨=

∨∨∨∨=∨=

 
P=D0∨D1∨A3∨A2∨A1. 

To build many input priority encoders the 
hierarchical LN is used, which consists of small 
encoders. Consider we have the encoder unit, which 
is built due the previous equations, but the inputs 
D8, D9 are not used (zeroed). Then one of possible 
16-input encoders is shown in Fig.1.24.  

Here the multiplexor selects the group of bits, 
which is generated by the activated coder, which has 
the higher priority. Due to these principles, the 
priority encoders are built, which are used, for 
example, as interrupt encoders. Another example is 
LN which finds the number of zero bits before the 

most significant bit in the mantissa during its normalization.  
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Table 1.7 
Di A3 A2 A1 A0

1 

D1

D2

D3

D4

D5

D6

D7

D8

D9

 

1 

1 

1 

A0

A2

A1

A3

D0 0 0 0 0 
D1 0 0 0 1 
D2 0 0 1 0 
D3 0 0 1 1 
D4 0 1 0 0 
D5 0 1 0 1 
D6 0 1 1 0 
D7 0 1 1 1 
D8 1 0 0 0  

Fig.1.23 D9 1 0 0 1 
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1.7  Shifters Table 1.9 
A1A0 Y3 Y2 Y1 Y0The shifter is a combinational network, which trans-

fers the input word to the output with the shift of its bits. 
The Table 1.9 shows how the logic right shift of the 4-bit 
word X is implemented in the shifter, giving the output 
word Y.  

0  0 X3 X2 X1 X0
0  1 0 X3 X2 X1
1  0 0 0 X2X3
1  1 0 0 0 X3

The shift bit number is given by the word A1A0. Due to 
the logic shift, the bit, which is shifted in, is zero. In the 
case of the arithmetic shift, the left shifted bit would be 
the sign bit, here X3. It is useful to build the shifters on the 
base of the multiplexor. Such shifter, which implements 
this algorithm, represented by the Table 1.9, is illustrated 
by Fig.1.25. 

 
X0
X1
X2
X3
A0
A1

0
 According to this principle, the shifter up to n–1 digits 

is based on the n-input multiplexers. But when n is larger 
than 6–8 then the hardware volume is too high. In this 
situation the multistage shifters are formed.  

One can design the shifter to 0, 4, 8, and 12 bits based 
on 4-input multiplexers. Then the complex shifter consists 
of such shifter, named as U1, and the usual shifter to 
0,1,2,3 bits, named as U2. Such a shifter is illustrated by 
Fig.1.26. Here the bit shift number is given by the code 
A3A2A1A0. The most significant bits A3A2 control the 
shifter U2, and digits A1A0 control the shifter U1. 
Consider we have to shift the code X to 13=1101 bits. 
Then the shifter U1 shifts it to 1 bit, and the shifter U2 
shifts it to 12 bits.   

1.8 Binary adders 

Binary adders or summators (shortly SM) are used for addition of binary 
integer numbers 

Q = B + D, where B = BBn-12n-1 +…+ B1B 2+BB0, D = Dn-12n-1 +…+ D12+D0. 

The combinational binary adders, which consist of one bit adders (full ad-
ders), are mostly used. The Table 1.10 is the truth table of such full adder. Here 
Qi is the sum of i-th bits BBi and Di, Ci is the carry bit to the i-th bit. KM for the 
output Ci+1 is illustrated by the Fig.1.7(b) for X = Bi, Y = Di. And the proper 
Boolean equation is Ci+1 = BiB Di∨BBiCi∨DiCi . KM for the output Qi is illustrated by 
the Fig.1.5(b) for X1 = Bi, X2 = Di,X3 = Ci. Therefore, this BF could not be 
simplified, and is equal to Qi = BiB DiCi∨BBiD̄iC̄i∨B̄iDiC̄i∨B̄iD̄iCi. Additionally, BF C̄i+1 
is needed to simplify the circuit of the (i+1)-th stage of the adder. The respective 
network occupies 10 gates.  
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But BFs can use common terms, as in the following 
equations 

Table 1.10  

Bi  Di  Ci Ci+1 Qi
0   0   0 0 0 Qi = BBiDiCi∨BiB D̄iC̄i∨B̄iDiC̄i∨B̄iD̄iCi, 0   0   1 0 1 
0   1   0 0 1 C̄i+1 = D̄iC̄i∨B̄iDiC̄i∨B̄iD̄iCi,   Ci+1 = C̄̄ i+1 . 
0   1   1 1 0 

The resulting network is drawn on the Fig.1.27, and it 
occupies only 8 gates, to say nothing about input invertors. 
The carry signal propagates through 3 gates. The n-bit adder 
is shown on the Fig.1.28. It is named as ripple-carry adder 

because of the ripple-carry scheme to transfer the 
carry bits. To perform the addition the input carry 
bit is C0 = 0. Such an adder consists of n full adder 
stages and has the delay 3nt, where t is the gate 
delay. 

1   0   0 0 1 
1   0   1 1 0 
1   1   0 1 0 
1   1   1 1 1 

 
B 
D 
C 
 
C̄ 

This delay can be decreased, and the hardware volume of the full adder can be 
minimized when it is implemented on two half adders (HAs). The HA adds two 
bits due to the truth Table 1.11. The following BFs describe it. 

,DBDBQ iiiii ∨∨=′    C'i+1 = BBiDi . 

Then the carry bit to the (i+1)-th digit can be formed due to the BF: Ci+1 = 
C'i+1 ∨ C"i+1, where C'i+1 and C"i+1 are the carry bits caused by the addition of 
couples of digits BBi, Di, and Q'i, Ci. The Fig 1.29 illustrates the resulting network.  

To increase the adder speed the parallel carry networks are designed. Such a 
network calculates the carry bit for the group of m digits using the two staged 
logic circuits. The adder is divided to k=[n/m] groups of parallel adders, each of 
them has its own parallel carry network. The resulting adder delay is estimated as 
kt, where t is the delay of the parallel carry network. The development of parallel 

carry networks by the designer is a bad praxis. 
Such a network has a lot of lines, which 
correct routing is very hard, because the line 
propagation delays can be much higher than 
gate delays. The common praxis is to use the 
fast speed adders as ready-to-use library 
components.  
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1 Table 1.11 
Bi  Di C'i+1 Q'i
0   0 0 0 
0   1 0 1 
1   0 0 1 
1   1 1 0 
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The subtraction function is usually performed using the 2-s complement 

approach. 2-s complement of n bit binary number D≠0 is defined as 

{D}2 = 2n – D = (2n– 1 – D) + 1 = (1…11 – D) + 1. 

The number in brackets is 1-s complement of D, which is formed by 
inversion of all the bits of the number D. The subtraction is calculated as B–D= 
B+{D}2. Therefore, to implement the subtraction, the second number has to be 
inverted, and a 1 is added to the sum.  

In applications both addition and subtraction are required. A single adder/ 
subtractor unit can be built using the ripple-carry adder discussed above. This 
unit is shown in Fig.1.30. Inspecting the logic diagram shows that 2 basic modi-
fications have been made to the original adder in Fig.1.28. First, each Di input line 
has an XOR gate in its path. Second, a new 
control bit F has been added to the circuit, 
which is connected to each XOR and also to 
the carry-in bit of the adder. The circuit acts 
as an adder when F=0, and as subtractor 
when F=1. In the second situation XOR 
gates work as invertors and carry-in bit is a 
1, which is added to the sum.  

Fig.1.30 
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1.9 Registers 

Register (RG) is a set of triggers, which have a common control network. A 
single trigger can be considered as the one bit wide register. Therefore, triggers 
often are named as registers as well. RG is used for data storing and implemen-
tation of some operations with them. The bit wise logic operation with the word Q 
in RG and the word D at its inputs is such operation. Another operations are 
different shift operations and data output. 

RG is considered to be a logic network, which consists of a trigger set (plain 
register) and logic network (LN) which implements the output functions and 
functions of trigger stimulating (see Fig.1.6). The RG design consists in selection 
of the trigger type and in LN synthesis.  

When the computing system with RGs is designed, one has to take in 
considerations the properties of the clock propagation system.  Each modern LSI 
circuit has one or small number of clock propagation trees. Such a tree provides 
the stable clock signal to each trigger with the minimum clock skew. The clock 
skew is the delay between the edge of the clock signal, which enters the trigger, 
and the base moment of time. Only when the clock skew is zero, the minimum 
clock period is estimated as the maximum delay from output of one trigger to the 
input of another one plus the trigger delay. Thank to this feature, the proving of 
the design correctness is assured for the circuit with thousands or millions of 
triggers. Considering this feature of the clock propagation system, in most of 
cases RGs are implemented on flip-flops.  
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Table 1.12 To provide the minimum clock skew it is not re-
commended to attach any logic circuit to the clock 
input of the trigger. Besides, when the races of the 
control signals occur, such circuit can generate 
glitches. The glitch is a short, needle formed 
impulse, which forces the incorrect trigger switching. 
Instead of controlling the clock signal, the enable 
input of the trigger is usually used.   

C R S W D Qt+1

0 X X X X Qt

↑ 0 0 0 Qt Qt

↑ 1 0 X 0 0 
↑ 0 1 X 1 1 
↑ 0 0 1 DI DI 
↑ 1 1 X XX 

Consider the design of RG with the functions of 
set, reset, and write (control signals S, R, W, respec-
tively) based on the D-triggers. The table 1.12 is its 
truth table, and respective WD is shown in Fig.1.31(a). 
Here the signals S, R have higher priority. The 
resulting stimulating function for the i-th digit of RG 
is the following:  

     

X X 0 0  

1 1 D 

D = S ∨ R̄·W·DI∨R̄·W̄ ·Q. 

Fig.1.31 (b) illustrates the i-th bit of the register. 
The shift operations in RG can be implemented as 

left and right shifts to 1, 2,… bits. Fig.1.32. represents a 
part of the shift RG with operations of left shift (SL), 

and right shift (SR) to a single bit. When the left shift operation, the i-th output is 
connected to the (i+1)-th input of RG. The input data DL is shifted in the first bit. 
When the right shift, the input data DR is loaded into the (n-1)-th bit, i-th output 
is connected to the (i-1)-th input of RG. Note, that DL=Qi–2, DR=Qi+2 when n=3 
(see Fig.1.32). When shifts are not done, i.e. when 1=∨ SLSR , then the i-th input 
and output of RG is connected together to provide the information storing. 

As was shown in the previous chapter, the subtraction is calculated through 
the 2-s complement of the data. For this purpose, in some operational units the 
data registers are used which outputs the direct or inverse code depending on the 
addition or subtraction operation. A single bit of such RG is shown in Fig.1.33. 
This is an example of RG with data output operation. The input E enables the 
register data storing. 
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1.10 Counters 

Counter (CTR) is a logic unit which implements the increment or decrement 
operation to 1, 2, etc., and data storing. As any logic circuit, it can be designed as 
a finite state machine (FSM). But there are some methods of the CTR synthesis, 
which use its operation specific.  

The CTR is a network with FFs. Therefore, the CTR synthesis must obey the 
rules of the FF synchronization, which were mentioned in the previous section. 
For example, two decades ago the method of sequential counters was widely used. 
Such counters are based on asynchronous T-triggers, which are connected 
sequentially in a chain. In this situation, each trigger is considered to have its own 
clock signal, which feeds its T-input. When such a CTR is implemented in the LSI 
circuit, then its design is complicated, and its operation can be unstable. 

To prevent this situation, the synchronous T-type FFs are used. A set of such 
FFs form the specific RG, which bits can be negated synchronously by the clock 
edge. Consider the count impulse CI comes to the T input of the first FF, and its 
stimulating signal is T0 = CI. Then its output Q0 exchanges its state every impulse 
CI, i.e. every second impulse Q0 = 1. The output of the second FF has to be 
exchanged every second impulse CI, i.e. its stimulating signal has to be T1 = Q0CI. 
The resulting stimulating functions of CTR triggers are the following: 

T0 = CI, T1 = Q0CI, T2 = Q1Q0CI,…, Ti = Qi–1Qi–2 …Q0CI. 

The respective 4-bit CTR network is shown in Fig.1.34. 
Here the signal on the FF input T enables the operation +1 
modulo 2. Such CT has the name of parallel carry CTR 
because the carry signal (here Ti) to the i-th bit is formed 
in parallel by the AND gate. 

The usual n-bit wide counter repeats its states after 2n 
input impulses. Such CTR is said to have the period 
(modulo) equal to 2n. Often the CTR counting period has 
to be not equal to 2n. Such CTRs are designed by excluding 
the spare states. This is usually achieved by jumping 
round such states.  

Consider the CTR with a period of k=5 cycles. To 
design such a CTR n=[log2k] = 3 FFs are needed. The states of 
the CTR with the period of 8 cycles are represented by the table 
1.13. Let three last states are to be excluded. Then to go round 
these states the following states are selected: the state before 
the first excluded state A=(a2,a1,a0) = (1,0,0), the first excluded 
state B=(b2,b1,b0) = (1,0,1), the last excluded state but the next 
one C=(c2,c1,c0) = (0,0,0).  

In the usual counter after the state A goes the state B, but in 
this CTR the jump from A to C has to be done. Then by the 
analysis of bits ai, bi, ci in the i-th digit the correction of the 
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Table 1.13 
Q2 Q1 Q0 State 

0 0 0 C 
0 0 1  
0 1 0  
0 1 1  
1 0 0 A 
1 0 1 B 
1 1 0  
1 1 1  
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stimulating function of the i-th FF is found. The three situations are distin-
guished, when    bi = ci ;      bi ≠ ci = ai;  and   bi ≠ ci ≠ ai. 

In the first situation the correction of the stimulating function is not needed, 
because jumps ai→bi and bi→ci are equal to each other because of ci = bi. In the 
second one the stimulating function provides the storing mode, due to ci = ai. And 
in the third one it implements the inversion, because of ci ≠ ai, i.e. ci = a⎯i. 

When C is all zero state, then such correction is implemented by forming the 
function F = Qn

a
-n1

–1·…·Q1
a1·Q0

a0, which is equal to a 1 only for the set (a2, a1, a0). 
Consider we have the T-type FFs. Then the stimulating functions are corrected 

due to the rule:     

⎪
⎩

⎪
⎨

⎧

=≠⋅
≠≠∨

=
=′

,     when 
;    when 

;   when 

iiii

iiii

iii

i

acbFT
acbFT

cbT
T  

where T'i is a new stimulating function of the trigger. 
For this example F = Q2Q⎯1Q⎯0. The KM of this function, which considers the 

"don't care" sets, is shown in Fig. 1.35. From this KM the resulting function is 
F=Q2, and T'0 = T0Q̄2, T'1 = T1, T'2 = T0 ∨ Q2. Because T0 = 1, T1 = Q0, T2 = Q1Q0, 
then the resulting functions are  

T'0 = Q̄2, T'1 = Q0, T'2 = Q1Q0∨ Q2. 

The network of derived CTR is illustrated by Fig. 1.36. Its waveforms are 
shown in Fig. 1.37, when the count enable signal is CI = 1 . Before its operation 
CTR has to be set in one of permitted states, for example, in the zeroed state 

using the R-inputs of its triggers. The count enable signal CI 

feeds the clock enable inputs of the triggers. 

Fig.1.35 
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Often the CTR is designed, which is based on the couple of 
adder and RG. The adder adds the increment to the RG content, 
and the sum is stored to RG each clock impulse when the clock 
enable (i.e. count enable) signal is active. Here the various 

increments can be used. Moreover, using the 
subtraction operation, CTR with the decrement is 
implemented. In the last situation, to form the 2-s 
complement the negated outputs of FFs are used.   

In the digital network engineering also the ring 
counters are used, which are based on shift RGs 
with the feedback. Consider the 3-bit shift right RG. 
In general, the design of the ring counter consists in 
the synthesis of the feedback LN (see Fig.1.38). The 
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s   

Table 1.14 well known ring CTR is the Johnson-
type CTR. Its LN is a single NOT-gate, 
which connects the output Q0 to the 
input DI. Then with each clock impul-
se the state of RG is exchanged, as it is 
shown in the Table 1.14. The period of 
state exchange is equal to 6. To pre-
vent this CTR of beginning its operation in the prohibited 
states 101 or 010, it has to be reset by the signal R. 

Consider the synthesis of the ring CTR with the period 
of 5 clock cycles. Let CTR is in the state 000. Then depen-
ding on the output L (0 or 1) after the right shift CTR goes 
to the state 000 or 100. These branches and another ones 
are represented by the state diagram, which nodes and 
edges represent states and branches, respectively (see 
Fig.1.39). Five nodes are selected in the diagram, which are 
connected into a ring by the respective branch edges. They 
are marked in bold in Fig.1.39. To provide these branches 
LN has to output the values 1, 1, 0, 0, and 0 on the sets 000, 
100, 110, 011, and 001. Another values are "don't care" ones. 
These values are represented by KM in Fig.1.40. The 

respective minimized BF is L = Q
⎯

2Q
⎯

1. 

1.11 Programmable logic devices 

 
As it was mentioned above, PLAs, CPLDs and FPGAs are 

widely used by many designers as the base of the customer 
made logic networks. In this chapter we discus the ways of 
developing the LNs based on these devices. Many companies 
supply the designers by different CAD tools to develop such networks. Usually the 
company, which produces such devices, provides the proper CAD tool. Such a tool 
is easily installed in PC, and has the friendly user interface.   

There are two different approaches to develop the program for PLAs. First of 
them is based on drawing the schematic network using the library of standard 
logic components in the proper graphical editor. The second one is based on the 
behavioral description of the network by some hardware description 
language (HDL). The second approach has many advantages like fast descrip-
tion and debugging of large projects, the description is independent on the 
network basis and technology, and it is standardized, and can be accepted by any 
CAD tool. The most widely used HDL languages are Verilog and VHDL. Therefore 
all the projects of ASICs and most of projects of CPLDs and FPGAs are designed 
on HDL. Below we will try to describe many LNs using VHDL. 

One logic cell (LC) of PLA can implement any logic function in the form (3) or 
its inversion. Such form can contain up to М terms, each of them has no more 
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than N variables and its inversions, and the number of different input variables is 
no more than K. For the modern CPLD devices like Altera MAX7000, Xilinx 
X9500 these parameters are: M≤5, N≤52, K≤52. To increase M the logic expander 
cells are used. The connection of LC and logic expander is equivalent to 
connection of two LCs. 

For example, LN in Fig.1.1, (a) is described in VHDL by the following entity 
and its architecture 

entity SWITCH3 is 
port(X1,X2,X3:in bit; 
          F: out bit); 
end SWITCH3; 
architecture BOOL of SWICH3 is  begin 

f<=(not X1 and not X2 and X3) or (not X1 and X2 and not X3) or  
         (X1 and not X2 and not X3) or (X1 and X2 and X3); 

end BOOL; 

The entity declares the interface of LN, which shows how to connect this LN 
in the network of the higher hierarchy level. The architecture is the description of 
LN behavior due to the designer's algorithm. In this example, such behavior is 
represented by the operator (statement) of parallel signal assignment, namely, by 
the Boolean equation. This operator can be freely exchanged by the following one 

f<= X1 xor X2 xor X3 after 5 ns; 

which represents LN in Fig.1.1 (b). Therefore, a single entity can have different 
architectures depending on its behavioral description.  

In examples the words in bold represent the language reserved words. In the 
statements they are logic operators of the language. The identifiers represent the 
signals. The signal in VHDL plays different roles simultaneously. It is the object, 
which has some value (0 or 1, true or false, integer, etc). It makes signaling (the 
signal exchange starts the execution the parallel operators in which it is used as 
an argument), and its time history can be stored and reproduced as the 
waveform. When the VHDL model is running, the parallel operator is executed 
any time when any its argument is exchanged, and just in this time (or after 
delay, which is given by the after clause) the result is exchanged.  

In the FPGA as LC the look-up table (LUT) is used. LUT represents one bit 
ROM with the k-bit address. In the i-th cell of this ROM the value f(α1,α2,…,αn) is 
stored, where  α1,α2,…,αn are digits of the binary representation of i (see the eq. 
(3)). In the modern FPGAs the 3, 4, 5 and 6 – input LUTs are used. When the 
complex Boolean function is synthesized then it is decomposed in the subfunc-
tions, which are mapped into a set of LUTs. In Fig.1.41 the LUT is represented, 
which implements the Boolean function from the previous example.  
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The VHDL model is compiled into the 
gate level description by the synthesis 
compiler. By this process, the Boolean 
equations are usually optimized automati-
cally. If the target is PLA or CPLD then 
this description is transferred directly into 
the programming bit stream. In another 
situation, using the implementation CAD 
tools, this description is mapped into the LC set, which is placed into the target 
chip, and the proper wire route set is found. The resulting configuration file can 
be stored in the configuring EPROM or be directed in FPGA.     

Consider some VHDL description examples for LNs of different kind. The 
decoder in Fig.1.17 can be described by the following parallel statement 

with A select 
 D<="00000001" when "000", "00000010" when "001",  

"00000100" when "010", "00001000" when "011",  
"00010000" when "100", "00100000" when "101",  
"01000000" when "110", "10000000" when others; 

Here the signal A is the input address, which selects one of alternative codes 
to assign to the signal D. Therefore this statement is called as the selective parallel 
assignment statement. Both signal A and signal D is, so called, bit vector. The 
digits of D represent the proper decoder outputs. This signal has to be declared as 
port in the entity as the following 

 D : out bit_vector(7 downto 0); 

Here the word downto shows that the bits in this vector are numbered in the 
descending direction, from D(7) down to D(0). The decoder can be used as part of 
larger description, then the signal D is not outputted to the outer space through 
the port, and is consumed in inner subnetworks. Then it has to be declared as the 
signal in architecture body before the word begin as the following 

 signal D : bit_vector(7 downto 0); 

The multiplexor can be described by the Boolean equation like (12), or by the 
following two parallel assignments 

with X select   
T<=D0 when "00", D1 when "01", D2 when "10", D3 when others; 
Y<= T and E; 

Here T is the intermediate signal, the bit vector X represents the address of the 
multiplexor input, and E is the enable signal. 

The priority encoder shown in Fig.1.23 can be represented by the following 
when-else statement 
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A <= "1001" when D9='1' else  "1000" when D8='1' else "0111" when D7='1' else  
  "0110" when D6='1' else  "0101" when D5='1' else "0100" when D4='1' else  
  "0011" when D3='1' else  "0010" when D2='1' else "0001" when D1='1' else  
  "0000" when D0='1' else  "1111"; 

The operator '=' compares bits and returns true when they are equal to each 
other. The when-conditions are proven sequentially. The signal D9 is proven as 
the first one, then D8 is proven, etc. Therefore, D9 has the higher priority level. 

VHDL proposes effective tools to describe shifters. For example, the right 
logic shift operation to A bits is described by the following operator 

Y<= X srl A; 

Here X is bit vector, and A has to be declared as integer.  
Consider the example of the full comparer design. Such a network compares 

the bit vectors A and B, representing positive integer values. It outputs signal 
AE=1 when they are equal, signal AP=1 when A>B, and signal AN=1 when A<B. The 
following VHDL program describes such a LN. 

entity COMPARATOR is 
generic (n:integer:=8);                      -- bit width of A and B 
port (A,B: in bit_vector(n downto 1);  -- input dates 
         AE, AP, AM: out bit);            --  equal, positive difference, negative difference 
end COMPARATOR; 
architecture LOG is 
 signal aei,api:bit;     -- intermediate results 
begin 
 aei<='1' when A=B else '0'; 
 api<='1' when A>B else '0'; 
 AE<=aei;  AP<=api; 
 AN<= not aei and not api; 
end LOG; 

The words after two hyphens mean the comments. Identifiers aei, api are the 
inner network signals, and are declared in the architecture as signals. The opera-
tors '=' and '>' compare the bit vectors and return the true value when they are 
equal or left operand is higher than right one, respectively. 

The generic clause shows that the network can be adjusted by the generic 
constant n. The integer n means the bit width of input data. For this property this 
project is multipurpose one, and can be adjusted to different bit widths in the 
projects where it is used as the component. Moreover, during its instantiating, 
some outputs can be left open. And in this situation, the synthesis compiler will 
remove the unnecessary networks, which are directed to the open outputs. 

The trigger behavior depends on its state in the previous moment of time. 
Therefore, the behavioral description of triggers and networks based on them is 
more complex than description of combinational circuits. For this purpose the 
process statement is used. This parallel statement represents a small program, 
which operators are implemented sequentially. There are input and output sig-
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nals of the process statement, and inner variables may be held. A subset of input 
signals forms the sensitivity list. When any signal from the sensitivity list is 
exchanged, then the process starts to run, and after implementation of its 
operators it stops. At this moment of time all the output signals get its new value. 

The latch in Fig.1.11 is described by the following process statement. 

process(C,S,R) begin 
 if C='1' and R='1' then     
  Q<='0'; 
 end if; 
 if C='1' and S='1' then 
  Q<='1'; 
 end if; 
end process; 

Here the list in the brackets is the sensitivity list; the sequential if-operators 
realize the logic behavior of this latch. When C = 1 then the if-operators are 
implemented sequentially and output signal Q accepts the value depending on R 
and S, i.e. the latch is transparent. When C = 0, then the signal Q does not 
assigned, i.e. it stores its previous value. When R = S = C = 1, the resulting value 
is Q = 1, i.e. it is not undefined value, as for real latches. There are more complex 
and precise VHDL models of such latches. 

It is worth to be mentioned, that when the signal assignment is not implemen-
ted in some process running, then such a process describes some latch. In 
another situation, the process describes some combinational circuit. For example, 
the multiplexor in Fig.1.19 is described by the following process statement  

process(E,D0,D1,D2,D3,X1,X0) begin 
 if E='1' then 
  if X1='0' and X0='0'  then Y<=D0; 
  if X1='0' and X0='1'  then Y<=D1; 
  if X1='1' and X0='0'  then Y<=D2; 
  else Y<=D0; 
  end if; 

else Y<='0'; 
end if; 

end process; 

The signal Y is assigned by some value during any process running, and it is 
not a latch. Consider that the last else clause is absent, and then it is the multi-
plexor with the D latch at its output, which is controlled by the signals X1, X0. 

To model the edge sensitive trigger the attribute ‘event is used, which returns 
the true value, when the rising or falling edge of the proper signal occurs. Below is 
the model of the D flip-flop with the clock enable, and asynchronous reset inputs. 

entity DFFE is port(C:in bit; -- clock 
D,R,CE: in bit;  -- data, reset, clock enable 
Q: out bit); 
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end entity; 
architecture beh of DFFE is begin 

process(C,R) begin 
  if R='1' then 

Q<=’0’;                 -- reset 
elsif C='1' and C’event then     

   if CE=’1’ then        -- clock enable is separated from the 
clock condition 

Q<= D;         -- data loading 
   end if;   

end if; 
end process; 

end beh; 

Consider the design of the 8-bit shift register based on this FF entity, which is 
functionally equal to one in Fig.1.32. The respective VHDL description is 

entity RGS is port(C:in bit; -- clock 
R: in bit;  -- reset 
SR,SL: in bit;  -- shift right, shift left 
DI: in bit;  -- input data 
Q: out bit_vector(7 downto 0)); 

end entity; 
architecture beh of RGS is  

component DFFE is                 -- component declaration 
port(C:in bit;           -- clock 

D,R,CE: in bit;  -- data, reset, clock enable 
Q: out bit); 

end component; 
signal D,Y: bit_vector(7 downto 0); -- intermediate data 
signal E: bit;                                  -- FF enable 

begin 
   D(0)<=DI when SL=’1’ else ‘0’; -- multiplexor of LSB 
   D(7)<=DI when SR=’1’ else ‘0’; -- multiplexor of MSB 

MUX:for i=1 to 6 generate         -- multiplexers for register inputs 
D(i)<=Y(i–1) when SL=’1’ else 

  Y(i+1) when SR=’1’ else ‘0’; 
end generate;  
E<=SR or SL;                      -- logic of the register clock enable 
RG:for i=0 to 7 generate    -- 8-bit register 

    U_FF:DFFE(C=>C,R=>R,CE=>E,D=>D(i),Q=>Y(i)); 
end generate;  
 Q<=Y;   -- register output 

end beh; 

In the declarative part of the architecture description the FF component, and 
intermediate signals are declared. In the behavior description part the trigger 
entity is instantiated in the network by the component instantiating operator. 
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This instantiation with the label RG is implemented 8 times with the different 
index i by the operator generate. Here the named binding of ports and signals is 
used. The respective associative binding is 

U_FF:DFFE(C,R,E,D(i),Y(i)); 

The named binding is preferable, because it provides less errors, and good 
readability of the description. Moreover, in such a binding the order of ports in 
the list can be variable. The operator generate, which is labeled by MUX, expands 
6 times the operator, which describes the multiplexor at the i-th trigger input. 
Due to the increment and decrement of indexes in assignments, for example, 
D(i)<=Y(i–1), shifts right and left are implemented. 

The counters can be described in VHDL as the set of FFs with the respective 
LN. But the language provides more effective tools to do this. Consider the 
counter, which is similar to one in Fig.1.36. This counter is described as:  

library IEEE; 
use IEEE.numeric_bit.all; 
entity CT5 is port(R,CI: in bit;  -- clock, reset, count enable 

   Y: out bit_vector(2 downto 0)); 
end entity; 
architecture beh of CT5 is  

signal Q: unsigned(2 downto 0); -- state of the counter 
begin 

process(C,R) begin 
  if R='1' then 

Q<=”000”;                 -- reset 
elsif C='1' and C’event then     

   if CI=’1’ then        -- count enable  
if Q= 4 then      -- state A 

Q<=”000”; -- state C 
else          

Q<=Q+1;   -- direct counting 
end if;   

   end if;   
end if; 

end process; 
Y<=bit_vector(Q); 

end beh; 

In the first rows the library IEEE, and its package numeric_bit are attached to 
the project. This package defines a set of types and functions, which are useful to 
operate with bit vectors as with the integer numbers. The subtype means unsigned 
that the respective bit vector is considered as the positive integer number without 
a sign. The state of the counter is declared as unsigned, and therefore it provides 
the increment operation Q+1 and comparing with integer Q = 4. As a result, the 
counter behavior is described rather shortly and clear. To output the counter 
state to the output port the near type conversion Y<=bit_vector(Q); is used. 



2. Memory units 

2.1 General properties 
All the computing systems require the ability to "remember" the values of 

binary variables. This is accomplished by using memory cells to store the variable 
and then recall it as needed. These cells are found in a register, or as large arrays, 
named memory units (MUs), that can store millions of bits of data. 

Digital systems employ different types of MUs whose characteristics vary with 
the application. One classification scheme is based on which operations are 
provided by the cell design. A read/write memory is one where the user may store 
values, hold them for an indefinite period of time, and read them out as needed. 
It is usually called as random-access memory or RAM. In a read-only 
memory (ROM), the information is permanently stored in the device before it is 
used in the electronic system. A user may read the information out of a ROM but 
is not permitted to change the data. A variation of this is the programmable 
ROM (PROM) where the user may store the desired data, but the write 
procedure requires a special electronics setup and is performed in a few times. 

The MU parameters depend on each other. The MU volume increasing forces 
its cost and delay increase. Therefore, in modern computers MUs are used, which 
have different volume, speed, and they form the hierarchical system. The main 
data storage in the computer is a RAM. This RAM is based on dynamic (DRAM) 
or static (SRAM) memory ICs. The memory IC cost decreases approximately in 
30% per year. DRAM is usually in 5 times cheaper than SRAM of similar volume. 
Its energy consumption is less approximately in 4 times as well. But usually the 
SRAM speed is in 2-3 times higher than one of DRAM. Modern synchronous 
DRAM (SDRAM) combines in itself the high volume DRAM cell array and high 
speed SRAM buffer. Due to the pipelined burst mode it provides the average 
access time less than 5-7 ns.  

There is a tendency to increase the RAM speed in two times per 5 years. But 
due to the Moore's law, the twofold increase of the CPU speed occurs in two 
years.  This forces the increase of the margin between the CPU and RAM speeds. 
The compromise solution was found, which consists in the use of small volume 
but fast speed intermediate MU, where the frequently used data were stored. This 
MU is named as the fast memory (FM). The representative of FM is cache-
RAM, which stores recently used pages of the virtual memory. Because the FM 
speed depends not only on its technology, but on the distance to CPU, the most 
effective way is to place FM near CPU in a single chip. The volume of such a FM is 
limited by the chip technology, and is less than ca. 256 kbytes.  

To increase the FM effectiveness, it is arranged as hierarchical FM. FM, which 
is integrated in the CPU chip, forms a first level FM. FM, which is placed near 
CPU, forms a second level FM. Often a third level FM is used. When CPU needs 
new data and it doesn't find them in a first level FM, then this data is rewritten 
from a second level FM to a first level FM, if any. Otherwise, this data is found in 
a third level memory. To increase the data transfer speed, FMs of different levels 
usually operate in parallel. When a portion of data is read from the first level FM 
then another portion is rewritten simultaneously from the second level FM. 
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Usually instructions and data are placed in different areas of the memory. 
After reading, they are loaded into different parts of CPU: instructions come to 
the control unit, and data enter ALU. Therefore, often FM is divided into two 
parts of data FM and instruction FM. And such a division allows for reading both 
data and instructions in parallel. 

The large data arrays are stored in the non-volatile outer MU (NVRAM), 
which have large volume (1012 –1016 bytes) but relatively small speed. They often 
are based on magnetic discs, and sometimes on tapes. Many recent NVRAMs in 
portable devices like the memory sticks are based on flash EEPROM. The hard 
disc drivers (HDD), named winchesters, are the most popular NVRAMs. Their 
access time is 1–10 ms, and data transfer speed is 2–40 Mbytes/s. To adjust the 
FM speed and speed of NVRAM it is arranged by the buffer memory of middle 
volume and middle speed, named HDD cache.  

The system of all MUs, which is used by the CPU, is named as a computer 
memory. The mulilevel computer memory can be considered as a virtual memory. 
Each level of such a memory is arranged by a special control unit, which provides 
automatic data transfer between memory levels. This control unit usually uses 
some strategy, which minimizes the average data access time. By the proper 
access strategy the virtual memory behaves as MU with the volume of NVRAM 
(~1013 bytes) and the access time of FM (~10 ns).     

2.2 Fast memory units 
The access time of FM is much less than one of the usual RAM. FM is added to 

CPU to minimize the stream of accesses to RAM, or the average RAM access time. 
It increases the CPU speed, because it depends on the MU speed. Besides, the 
data access in FM, and operations in ALU can be implemented in parallel. 

FMs with direct, associative, pipeline and stack addressing modes are distin-
guished. By the direct addressing, the FM cells have the addresses from 0 to 
m-1.  The cell addresses are placed directly in the address field of the instruction. 
When m is a small number, FM is usually called as a register file. To define the 
register file address a small bit number is distinguished, for example, 4 by m=16. 
In the direct addressing mode, the programmer or compiler has to optimize the 
cell loading to increase the CPU speed, and this is a complex task.  

In the associative addressing mode, the operand has not an address but a 
tag or a set of tags. When the tag is input in the associative FM, then it outputs 
one or several words with equal tags, or nothing, when tags mismatch. This 
addressing mode is used in the cache memories, which are discussed below. 

Two processing units often are connected through the buffer FM, with the 
pipeline addressing mode. Such FM is considered as a set of registers, which 
are connected in a pipeline. The source unit pushes the data in FM, and the 
destination unit reads the pulled data in the very order, in which the data have 
entered FM. This mode is named as first in – first out (FIFO). Hence, such a FM 
is often called as FIFO. This FM is usually used when the source unit outputs the 
data with unstable time intervals, for example, in the communication systems.  
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In the stack addressing mode, FM is considered as a register stack. I.e. the 
user has access only to a stack top, and can push the data to it or pull the data 
from it. Hence, the read data is the data, which was pushed in the stack last time, 
and this mode is called as least recently used (LRU).  

2.3 Register file 
The CPU provides a way to store data words that can be easily used as inputs 

into its arithmetic and logic unit (ALU). These storage locations are made up of 
several registers that are wired into the datapath in a convenient manner. Such a 
group of registers is called as register file.  

The register file can have a single input and output as the usual RAM has. But 
to increase the datapath throughput, the register file has at least one writing 
channel and one or two reading channels, which are associated with ALU ope-
rands. For example, the three-port FM provides loading of two operands of the 
instruction in ALU and storing the result in a single clock cycle, which provides 
the three fold increase of the speed. It should be mentioned that in FM with two 
write ports the conflict situation can occur. When the writing to two channels is 
provided, and equal addresses are used simultaneously, then the written datum 
has the undefined value.  

 Consider the register file of 16 registers with two reading channels A and B, 
and writing channel Q. Its structure diagram is shown on Fig.2.1. By the 
addresses AB and AD the multiplexers MUXB and MUXD select one of 16 

registers for reading. To write the data by the 
address AQ = i, and writing enable signal WE, 
one of the decoder DC outputs enables the 
clock signal CLK to the i-th register.  
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Such FM as well as RAM can be modeled in 
VHDL, and then synthesized in ASIC as a set 
of triggers, which are addressed by the proper 
decoders and multiplexers. But the FM 
description is more clear, when instead of 
bit_vector type the array type is used. Consider 
the mentioned above register file with the data 
width of 8 bits. Its VHDL description looks like 
the following.  

Library IEEE; use IEEE.numeric_bit;  
entity FM16 is port(CLK,WE: in bit; -- clock and writing enable  
  AB,AD,AQ: in bit_vector(3 downto 0); -- 4-bit addresses 
  Q: in bit_vector(7 downto 0);      -- input  data 
  B,D: out bit_vector(7 downto 0));      -- output data 
end FM16; 
architecture BEH of FM16 is 
 type TRAM16 is array (0 to 15) of bit_vector(7 downto 0); --register array type 
 signal RAM:TRAM16:=(others=>"00000000");-- array of 16 cells is initialized by zeros 
begin 
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 RAM_16:process(CLK,WE,ADDR)   -- process, which describes RAM 
   variable addrb,addrd,addrq:natural;  -- intermediate address variables 
 begin                      
   addrb:=To_integer(Unsigned(AB));-- bit vector is transferred to a natural value 
   addrd:=To_integer(Unsigned(AD));-- bit vector is transferred to a natural value 
   addrq:=To_integer(Unsigned(AQ));-- bit vector is transferred to a natural value 

      if Rising_edge(CLK) then  --clock rising edge finding 
         if WE='1' then 
            RAM(addrq)<= DI;   -- data writing by the rising edge of the clock when WE=1 
         end if; 
      end if; 
     B<= RAM(addrb);        -- asynchronous data reading by the address AB  
     D<= RAM(addrd);        -- asynchronous data reading by the address AD  
end process;  

end BEH; 

In such a manner the RAM of any volume can be modeled and then synthesi-
zed. Also the ROM can be modeled as RAM with specific cell initialization and 
without the writing property. But usually the ROM is given as the array of 
constants. 

2.4 Stack memory 
The stack FM can be implemented on the 

base of the register file or RAM. Then the 
operand address is derived from the previous 
address by the increment or decrement to a 1. 
I.e. the addressing is implemented by a coun-
ter or by the array moving up or down to a 
single cell. The FM structure with the counter 
addressing is illustrated by Fig.2.2. When 
writing (WR) of a word to the memory array 
M, a 1 is added to the CTR content. When 
reading (RD), CTR is decremented to a 1. The next word is written to a cell with 
an address, which is in a 1 higher than the previous cell address, and the reading 
is implemented in the reversed order. Signals "FM is empty" (OF<),  "FM is full" 
(OF>) are formed in the zeroed and in m-th states of CTR. The error signals ER< 
and ER> indicate the reading of empty FM and FM overflow. 
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2.5 Cache memory 
The automatic exchange of data between FM and RAM is achieved in the 

associative addressing mode. The FM structure with such a mode is shown on 
Fig.2.3. It contains information MU (M), associative MU (CAM), control unit CU, 
address register RGA, and data register RGD. Each data stored in M has a tag, 
which is the data address, and which is stored in CAM. When addressing FM, in 
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RGA the address is written, and signals of 
reading RD and writing WR are entered in 
CU. The address is compared with the 
addresses in CAM by a set of comparators 
CMP. If the address is equal to some in CAM 
then the access is said to hit. In this 
situation the proper datum is read from M to 
RGD or written from RGD to M. If the 

address is not equal to any in CAM, the access is said to miss. Then CU organizes 
the access to the outer RAM. The datum read from RAM is written to RGD and to 
the empty cell of M, and its address is written to the respective cell of CAM. The 
next reading of this datum is fulfilled from FM but not from RAM. When the 
writing operation is implemented then the datum is written both in M and in 
outer RAM. 

When FM is in operation, all the cells of FM are full. Therefore, to access a 
new address one of the cells has to be released. It is natural to release a cell that 
is accessed less times. To distinguish such a cell CU contains a network, which 
selects such a cell considering some strategy. The simplest strategy is the 
following. Consider triggers Ti, which are tagged to  i-th cells.   At the beginning, 
Ti = 0 for all i. If access to the i-th cell hits, then Ti = 1. This means that at least 
one access to this cell has occured. If access to FM misses, then the first selected 
cell is flushed, which Ti contains a 0. When at this moment Ti = 1 for all i, then Ti 
=0 for all I, except one, which is selected for this access. To simplify the 
assignment of the released cell, the randomized selection of the cell or the 
selection due to the round robin rule is implemented. 

The disadvantage of the associative FM consists in its hardware complexity 
when its address volume is high. Its hardware effectiveness is increased when the 
address-associative mode is used. Consider the example of the 8 kbyte cache RAM 
of the i486 CPU. It contains 32-bit address bus and 4-byte data bus. One 
associative cell contains four 16-byte rows of data and a 91-bit tag (see Fig.2.4). 
The memory unit M contains only 128 associative cells.  
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The tag consists of four 21-bit address fields, 4 bits of the row correctness code 
and 3 bits, which are used to find out the cell for releasing. 4 lowest address bits 
select a single byte of a row. 7 middle address bits select the associative cell. And 
the rest of them are the address code, which is compared to the proper 21-bit tag 
field. When the access occurs, 7-bit address field selects a single associative cell; 
four 21-bit comparators compare highest address bits with the proper tag fields. 
If the comparing succeeds, and the data correctness bit is a 1, then the datum is 
accessed. Otherwise, in the selected cell a row is released, to which the access did 
not occur for a long time, and the datum from the outer RAM is written in it. 
Simultaneously the respective tag field is corrected. We see that such a cache 
RAM is based on the usual RAMs and on only four-address comparators.  

Many microprocessor cache RAMs have the similar structure. They are 
distinguished by MU volume, associative cell number, row length, etc. When the 
access is missed, not a single byte is exchanged but a whole data row. Therefore, if 
the address sequence is a randomized, then the average access time can decrease 
in many times. But in most cases the address sequence is the incremental one, for 
example, the program sequence. Therefore, the next instructions occur in the 
same row, and cache misses happen more rarely. 

2.6 Memory integral circuits 
The MU can be a part of CPU or system on the chip. Here the memory cell is 

usually implemented as a trigger. As a result, such a MU could not have large 
volume (more than ~105 of bytes), and it consumes large power. This is the 
reason that large volume MUs are usually manufactured as the separate ICs. Due 
to the specific technology, special design of memory cells, read-write amplifiers, 
decoders and multiplexers, such MUs have the minimized power consumption, 
high speed and the volume up to ~108 of bytes. The memory ICs are divided to 
SRAM, DRAM and EEPROM due to their technology and properties. 

RAM stands for random-access memory, which means that any word in it can 
be accessed in the same amount of time as any other word. The term static RAM 
(SRAM) means that once data is stored in the RAM, the data remains there until 
the power is turned off. This is in contrast with a DRAM, which requires that the 
memory be refreshed periodically to prevent the data loss.  

SRAMs are available that can store up to ~107 bytes of data. For illustration, 
we describe a CMOS SRAM that can store 2 K bytes of data. But the principles 
illustrated here also apply to large SRAMs. Fig.2.5 shows the block diagram of 
this SRAM. This MU has 16384 cells, arranged in a 128×128 memory matrix M. 
The 11 address lines are divided into 2 groups. Lines A10–A4 select one of the 128 
rows in the matrix using the row decoder DCR, which outputs are word lines WLi. 
Lines A3–A0 select 8 columns in the matrix at a time, since there are 8 data lines. 
The selection is performed by the bidirectional column I/O multiplexor MXCIO. 
The matrix data outputs go through tristate buffers before connecting to the data 
I/O pins. These buffers are disabled except when reading from MU.  
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A SRAM cell (Fig.2.6) that stores one bit of 
data is constructed by embedding the cross-
coupled inverters in a large network that allows 
us to set or reset the cell as a latch. The access 
switches (SW) are controlled by the i-th word 
line WLi, which is decoded by the row decoder. 
When WLi = 0 the cell is isolated from external 
influences and holds the bit consuming the 
smallest leakage power. If WLi = 1 then both 
switches are closed, which connect the bit line 
D and bit-bar line D̄ to opposite sides of the 
cell. This allows us to writing to, or reading 
from, the cell. The lines D and D̄ are connected 
to MUXCIO. The simplest cell is formed by 4 
CMOS transistors of inverters and 2 transistors 
of switches. This provides the small hardware 
volume of SRAM. In a dual-port SRAM the 
switches, bit lines and bit-bar lines are doubled, 
as well as RDC and CIO are. 

The truth table for the RAM (Table 2.1) de-
scribes its basic operation. Z in the I/O column 
means that the output buffers have high impe-
dance outputs, and the data inputs aren’t used.  

In the read mode, the address lines are 
decoded to select 8 of the cells, and the 
data comes out on the I/O pins. In the 
write mode, input data is routed to the 
latch  inputs in the selected cells when 
W̄Ē = 0, but writing to the latches in the 
cells is not completed until either W̄Ē = 1 

or the chip is deselected.   
A DRAM array is similar to an SRAM array in that it 

allows us to store data using the concept of cell addressing. 
The difference between the two types of MU is in the internal 
design of the cells themselves. The circuit schematic for such 
a cell is shown in Fig.2.7. The cell consists of a single FET 
transistor and a storage capacitor CS. This allows for a very 
high integration density and makes it possible to create a 
single chip that has up to ~109  of cells.  

When WLi = 1, the FET acts as a closed switch allowing a write or read 
operation. A hold state is obtained by bringing the word line to WLi = 0, shutting 
off the direct conduction path between the data line and the storage capacitor. 
But closed FETs admit a small leakage current that removes charge from the 
capacitor. This is an explanation that the data bit can only be held for a short 
period of time (<100 ms).  The data must be periodically updated to insure that it 
is valid. This is called a refresh operation. It is performed by readout of the data, 

Table 2.1 
C⎯S⎯ O⎯E⎯ W̄Ē Mode I/O pins 
1 X X not selected Z 
0 1 1 output disabled Z 
0 0 1 read data out 
0 X 0 write data in 
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amplifying it, and then writing it back into the cell. In 
modern ICs the row selection for reading forces the refresh of 
the whole row of cells. The refresh circuitry is included on the 
chip and makes it appear that MU has long-term retention 
characteristics. Refresh rates are on the order of a few 
kilohertz. For a single refresh clock one row of cells is 
refreshed. To refresh the whole DRAM, all the rows have to 
be traversed. Therefore, a thousand of rows are traversed 
with the speed of at least a few megahertz. 

DRAM
 

 

     DO

The difference in row and column addres-
sing is usually utilized in all DRAM devices. 
Consider the smallest DRAM device of the 
volume of 65 K bits, which drawing symbol is 
shown on Fig.2.7. Its truth table (Table 2.2) 
shows the DRAM mode depending on control 
signals. The wafeforms in Fig.2.8 illustrate its 
usual operation. RAS and CAS are acronyms for 
the row address select and column address 
select signals. When R̄ĀS̄ = 1, the circuit stores 
the data. When R̄ĀS̄ = 0, C̄ĀS̄ = 1, the row 
address bits, which are set in the address bus, 
are latched in the inner address register. 
Simultaneously all the cells of the respective 
row are refreshed. When C̄ĀS̄ = 0, the column 
address bits, which are set in the address bus, are decoded as well as the row 
address bits do. Simultaneously the writing or reading operation is implemented 
depending on the W̄Ē  signal, which is finished when  C̄ĀS̄ = 1.  

As we see, the address in DRAM is loaded in two cycles. Due to this property, 
the pin number of this IC is much less than this number for SRAM. The access 
period is often minimized when the row address is latched a time, and the cells of 
a single row are accessed using only the column address exchange. The disadvan-
tage of such a mode consists in the need of the outer address multiplexor, which 
forms the row and column address bits. Nevertheless, modern SOCs and micro-
processors, which access the DRAM devices, usually have the special DRAM con-
trollers, which provide both address control and refresh control, not to say about 
timing control, IC initialization, and control bit checking. Therefore, the DRAM 
disadvantages are "unvisible" for the user. 

Due to the deep address decoding networks, slow column data amplifiers and 
two-cycle access mode, DRAMs usually had the access time of tenths and 
hundreds of nanoseconds. Modern DRAMs provide the high-speed access, thanks 
to a set of improvements. A set of memory banks is placed in IC, which provide 
the access in parallel. The whole address is the concatenation of row, column and 
bank addresses. The DRAM ICs have usually bidirectional data bus with the 
width up to 36 bit. To access the parts of this data (bytes, nibbles), the data mask 
bits (DQM) are used. To provide the automatic refresh mode, DRAM has the 

Table 2.2 
R̄ĀS̄ C̄ĀS̄ W̄Ē Mode 
1 X X not selected 
0 1 X row address 

latched, refresh 
0 0 1 read 
0 0 0 write 
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refresh counter, which is attached to the row address register. 
In SDRAMs the network is pipelined, i.e. the input data, address, output data 

and even the read row data are synchronously stored in the buffer register 
networks for a clock cycle. Therefore, the read operation latency reaches 2–4 
clock cycles. But the clock frequency increases up to hundreds of megahertz.  

Besides, if a set of similar operations is performed, for example, reading 
sequence, then a single access can occur in a single clock period. The fast page 
mode (FPM) or burst mode serves to this process. In FPM, the row address is 
latched, and the access is performed for different column addresses. To provide 
the burst mode, the column address register is implemented as the fast speed 
counter. Therefore, when CPU writes or reads a set of data to incremented 
addresses, the burst mode is usually used.  

 To control the fast page mode correctly, its timing is programmed in the 
DRAM controller by four figures. For example, the set 5-1-1-1 shows that to 
implement the first access 5 clock cycles are need, and to access the second, third 
and fourth data, it takes a single clock cycle. The DRAM controller has to consider 
that DRAM operates in different modes (initialization, read, write, read burst, 
write burst, no operation, refresh, load mode and others), which need the proper 
timings. The RAS, CAS, WE, DQM signals are considered as a command word 
and are stored by a clock edge. In the load mode, the address bits are considered 
to be the control word, which controls burst length, burst type, access latency, etc.  

 CMOS technologies provide for a large variety of ROM circuits to be 
manufactured. Although most of them allow user data to be entered. EPROM is 
an acronym for Erasable-Programmable ROM. Programming in it is achieved by 
a process in which a high voltage is used to transfer charge to a "floating" 
capacitor of a memory cell. The capacitor is usually implemented as the gate of a 
MNOS transistor. When the charge is present, then the transistor is open. The 
charge is trapped on the capacitor and it cannot escape under normal 
circumstances. In this type of devices, erasure is achieved by placing the device 
under an ultraviolet light source, and keeping it there for several minutes. Now 
these devices have been replaced by ones that can be erased electrically. 

The electrically erasable EPROM (EEPROM, E2PROM) has the advantage 
that the data may be erased using electrical circuitry and does not require that the 
chip be physically removed from the system. To erase the cell, the capacitor 
voltage is reversed and the charge moves in the opposite direction. New 
technology allows us that a large number of cells can be erased at a time. These 
devices are called flash EPROMs, with "flash" referring to the speed at which 
the array may be erased. 

The ferroelectric RAM (FRAM) absorbs in itself the advantages of DRAM 
(high volume, fast speed) and NVRAM (data storing after power off). Its cell 
circuit resembles the one of DRAM. The datum in it is stored not as a charge but 
as a polarization sign of the cell capacitor. For this purpose, the capacitor is made 
of the ferroelectric insulator. When reading, if the capacitor has changed its 
polarization, then a 1 is considered to be read. But at this process, the polari-
zation is reversed, i.e. a 0 occurs in it. Therefore, the reading process is finished 
by storing the read data back.  



3. Networks for arithmetic and logic 
operations 

3.1 Arithmetic and logic units 
In the first chapter, we discussed the design of networks for arithmetic and 

logic operations like adder, subtractor, AND gates, shifter, etc. In the network for 
arithmetic and logic operations of CPU or application-specific processor these 
units are usually combined in a single unit, named as an arithmetic and logic 
unit (ALU). Usually the ALU has two n-bit input data busses A, B and an n-bit 
result bus D. The k-bit control word F can set one of 2k arithmetic or logic 
operations. Additional input CI serves as the carry bit input. One or more flag 
outputs are used for signaling carry output C, zero result Z, negated result N, or 
overflow V. 

 The simplest way to design an ALU is to merge the outputs of the separate 
units (adder, AND gate array, etc) by a multiplexor, which is controlled by the 
word F. Such a network has potentially the maximum speed. But its hardware 
volume is too high. Another approach consists in the synthesis of the 
multifunctional LN, which contains n equal stages, may be, except first and last 
one. And each stage, named a bit slice, represents the Boolean function of 
operand bits Ai, Bi, Ci, and control word F. Sometimes the additional inputs and 
outputs are needed, for example, to provide the shift operations. 

Consider the design of a simple 8-bit ALU, which we name as a multipurpose 
summator (LSM). It implements two arithmetic functions – addition and sub-
traction – and three logic bit-wise functions – a 1 output, AND and Exclusive OR. 
The output flags are carry CO, negative result (sign) N and zeroed result Z. Let the 
design is based on 4-input PLA cells. It can 
be implemented on 4-input LUTs as well. 

Firstly, the truth table for the outputs of 
the i-th bit slice of LSM is composed (see 
Table 3.1). In three sets of the control code F 
the function Di is undefined and it is marked 
by "X". The subtraction is implemented as 
an addition with negated operand plus a 1 
(see the chapter 1.8).  

Table 3.1  

F2 = 0 F2=1 F0F1
Di Ci+1 Di

0 0 1 X X 
0 1 X X AiBi

1 0 Ai⊕B̄i⊕Ci AiB̄i∨AiCi∨CiB̄i X 
1 1 Ai⊕Bi⊕Ci AiBi∨AiCi∨CiBi Ai⊕Bi

The idea of the LSM synthesis consists in 
the following. The output function can be 
decomposed and be represented by the inter-
mediate results Xi, Yi and Ci+1. The resulting 
network is searched as the network in Fig.3.1. 
The output of the unit LNO implements the 
addition modulo 2 of Xi, Yi and Ci, i.e. 

Ai⊕BBi⊕Ci. Units LNX, LNY, and carry circuit 
LNC generate the proper operands Xi, Yi, Ci+1, 
depending on the code F. The modulo 2 func-

LNX
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Bi 
F 
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LNY

LNO

LNC
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Xi 
 
Yi

Di

Fig.3.1 
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tion of 3 bits is (see the chapter 1.2): 

Di = X̄iYiC̄ i∨XiȲiC̄i∨X̄ iȲiCi∨XiYiCi. 
Table 3.2 

 From this function we can derive 

the Exclusive OR function Xi⊕Yi, when 
Ci = 0. Now we can build the truth tab-
les of the functions Xi, Yi, and Ci+1 

(Table 3.2). The "don't care" states of 
Ci+1 by F2 = 1 can be defined as zeros. 
Then Ci+1 = F̄2(XiYi∨XiCi∨CiYi), which 
is a function of 4 arguments. The 
value Ci+1 = 0 by F = 000 is formed 
when Ci = 0 and Yi = 0.  

F2 = 0 F0F1 F2 = 1 
 Xi Yi Ci+1 Xi Yi Ci+1

0 0 Ai Āi 0 Ai X X 
0 1 X X AiB̄ iAi Ai 0 
1 0 Ai B̄i XiYi∨XiCi∨CiYi Ai X X 

It is useful to do without LNX 

unit, i.e. this unit outputs always Xi = Ai, and when Ci = 0 we have Di = Ai⊕Yi. 
When arithmetic operations are done, the function Yi is equal to BBi for addition 
and to B̄ i for subtraction. To derive the function Yi for AND and a 1 operations, 

we have to solve the following equations: Ai⊕Yi = AiBiB  and Ai⊕Yi = 1. The solution 

of the first equation is Yi = AiB̄ i, because Ai⊕AiB̄ i = Ai⊕Ai(1⊕BBi) = Ai⊕Ai⊕AiBi B = AiBBi. 

The solution of the second equation is Yi = Ā i because Ai ⊕ Ā i = 1. These solutions 
are put in the Table 3.2. The Boolean function Yi is represented by KM, which is 
shown in Fig.3.2 (a). Fig.3.2 (b) illustrates this KM, but with assigned "don't 
cares". The resulting function is          Yi = F 0̄F1AiB̄ i∨F0F 1Bi B ∨F0F 1̄B̄ i∨F 0̄F 1̄ Ā i. 

The function C0 has to be a 1, when subtraction, and a 0, when another 
functions. If it is equal to the input signal CI, then it can be given the proper value 
by outer networks. Carry flag is CO = C8, sign flag is N = D7 and zero flag is 

)()( 01234567 DDDDDDDDZ ∨∨∨∨∨∨∨= . The synthesized ALU network is 

shown in Fig.3.3. Its hardware volume is equal to 27 PLA cells or LUTs. 
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The speed of LSM is found from the longest path. It contains seven PLA cells, 
which form C8, one cell to calculate D8, and two cells to derive Z. The amount 
delay is equal to 10 delays of PLA cells.  

This LSM can be easily described by VHDL as the following 

C<=1 when CI='1' else 0; 
with F select 
 T<="011111111" when "000",          -- a 1 
  RESIZE(A,9) + not B + C when "010",-- subtraction 
  RESIZE(A,9) +B+C when "011",       -- addition 
 "0"&(A and B) when "101",              -- AND 
 "0"&(A xor B) when others;            -- XOR 
D<=T(7 downto 0); 
CO<=T(8); 
N<=T(7); 
Z<=not(T(7) or T(6) or T(5) or T(4) or T(3) or T(2) or T(1) or T(0));  

Here signals A,B,D,T are of type signed, which is declared in the 
IEEE.Numeric_Bit package. They support both logic and arithmetic operations, and 
synthesis of respective logic networks. The temporary signal T is the bit vector of 
the length 9. Its most significant bit (MSB) serves only to derive the carry bit CO 
after addition. To provide the vector width match by the signal T assignment, the 
resize function RESIZE and concatenation (function ‘&’) with zero bit are used. The 
assignment depending on the code F is implemented as the selective parallel 
signal assignment (with…select).  The "don't care" meanings in it are assigned in 
the when others clause.  

This program piece can be inferred by the synthesis compiler as the adder-
subtractor and the logic circuit, which are coupled by a multiplexor. Hence, the 
hardware volume of the derived network is much higher than one of the network, 
shown in Fig. 3.3. This example shows the advantage of the manual synthesis. 

3.2 Datapath 
The main CPU units are the control unit and the datapath. The control unit 

provides fetching and decoding the instructions, and outputting the respective 
control signals. The datapath circuits provide the logic for every instruction that 
can be performed by CPU. In general, the datapath network can be broken down 
into three main groups of circuits: the register file, the ALU and the local MU. 
The register file is a group of general-purpose registers, which are used to store 
data words for use in the current chain of calculations. ALU provides all of the 
arithmetic and logic functions. The local MU serves as a cache MU. It is included 
in CPU to provide fast read and write operations that will not slow down the CPU 
operation. The register file and cache MU were discussed in chapters 2.2, 2.4.  

Consider the simplest datapath, which contains only register file (FM) and 
ALU. The block diagram of the datapath, which utilizes the three-channel FM, is 
shown in Fig.3.4. The block diagrams of its FM and LSM are shown in Fig.2.1, and 
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Fig.3.3, respectively. The access to such a FM needs three addresses AB, AD, and 
AQ. The datapath is connected to the outer space (I/O ports, RAM) through the 
busses DI and DO. Through the bus DI the data is loaded into FM, and through 
the bus DO the result is outputted using the load and store instructions. 

To achieve the algorithmic completeness, the ALU needs the shift operation 
implementation. The left shift can be implemented by addition of the same 
operand (B+B=2B). To shift right a shifter SHU> to a single bit is needed. If it is 
synthesized as one in the chapter 1.7, then it is represented by the two-input 
multiplexor, which is controlled by the bit F>. The shifter has the shifted in bit 
input QI and shifted out bit output QO.  

When the two-channel FM is used, then only two address codes are needed. 
Then the register-accumulator (AC) is of demand, which stores the second 
operand. Two methods of AC switching are possible: at the LSM input (Fig.3.5) 
and at the LSM output (Fig.3.6). The second method is preferable, because both 
PLA and FPGA cells have the structure, in which the logic circuit result is stored 
in a trigger. Therefore, AC can be mapped together with the logic circuits of 
SHU> and LSM, and this minimizes both hardware volume and signal delays. 

The simplest operations like addition, shift, logic operations are performed 
for a single clock cycle. And the complex operations like multiplication, division 
are calculated by the subprograms. In the RISC processors these subprograms are 
formed by the processor instructions, and in the CISC processors they are usually 
microprograms. In the second situation, the signals AB, AD, AQ, WE, F, CI, F>, 
QI usually form the control fields of the microinstruction. 
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3.3 Binary multipliers 
The multiplication is the frequently used operation in all the computers. 

Consider the multiplication of natural values, i.e. unsigned integers X and Y: 

P = YX = Y(xn-12n-1+…+x121+x020) = 2-1(Y'xn-1+…+2-1(Y'x1 +2-1(Y'x0+0))…), 

where Y' = Y2n. That means that the multiplication affords up to n additions and 
shifts, and it can be implemented as n iterations of the cycle Пi+1 = 2-1(Пi + Yxi) 
by the initial conditions Пi = 0, i = 0. Such an algorithm is named as multi-
plication, beginning at the least significant bit (LSB) of the multiplier and with 
the shift right of the sum of partial products. To implement this algorithm in 
the network, the multiplicand register RGY, AND network for the bit 
multiplication Yxi, adder SM for addition of Пi and Yxi, 2n+1 bit shift register 
RGP of partial products Пi, and shift register of the multiplier RGX are needed. 
The block diagram of such a multiply unit (MPU) is shown in Fig.3.7. 
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The register RGP consists 

of the higher n+1-bit part 
RGPh and lower part RGPl. 
Because RGX and RGPl shift the data in the same direction, and RGX becomes 
empty in the operation process, then these registers can be combined in a single 
register RGX (see the dotted line in Fig.3.7). Let we see an example of 4-bit 
multiplication of 1100 to 1011. The state chart of this process is shown in the table 
3.3. It is obviously, that the addition can be combined with the shift in a single 
cycle. Then RGPh is an usual n-bit register, the sum is transferred from SM to 
RGPh with the shift right, and the sum LSB is shifted in RGPl. 

Table 3.3 
Cycle RGX xi RGY RGPh RGPl Operation 

0 1011 1 1100 00000 0000 initialize 
1 1011 1  01100 0000 +Y 
2 0101 1  00110 0000  shift 
3 0101 1  10010 0000 +Y 
4 0010 0  01001 0000  shift 
5 0010 0  01001 0000 +0  
6 0001 1  00100 1000 shift 
7 0001 1  10000 1000 +Y  
8 0000 0  01000 0100 shift 
9 0000 0  01000 0100 end 

 

This multiplier unit (MPU) structure and its behavior can be considered as 
the multiplication scheme, i.e. the computational model, which represents the 
multiplication algorithm. Such a scheme can be implemented as a subprogram in 
the computer. For example, it can be programmed in the datapath, considered in 
the chapter 3.2. Then RGX, RGY, RGPh are mapped in 3 registers of FM, LSM 
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makes addition, SHU> shifts multiplier and partial products, bit xi is the shifted 
out bit from SHU>, and it serves as the branch condition. 

There are another three multiplication schemes, which are different in begin-
ning at LSB or beginning at most significant bits (MSB) of the multiplier and in 
the shift of partial products or shift of multiplicand. This type of MPU is referred 
to as a serial-parallel MPU, since the multiplier bits are processed serially, but 
the addition takes place in parallel. Such kind of MPUs, and multiplication 
schemes were widely used in computers in sixties and seventies. But now they are 
implemented only in the simplest controllers and some application specific 
processors. Instead, the parallel MPUs are most popular ones, described below. 

Consider the 4-bit unsigned multiplication. On the bit level it can be 
represented as 

      P = YX =    23x0y3+22x0y2+21x0y1+20x0y0+ 
   +24x1y3+23x1y2+22x1y1+20x1y0+ 
    +25x2y3+24x2y2+23x2y1+22x2y0+ 
     +26x3y3+25x3y2+24x3y1+23x3y0 
    ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯⎯⎯⎯⎯⎯⎯⎯ ⎯⎯⎯⎯⎯⎯⎯⎯ ⎯⎯⎯⎯⎯⎯⎯⎯ ⎯ ⎯ ⎯
   27p7  +  26p6  +  25p5   +  24p4  +  23p3  +  22p2  +  21p1   +  20p0 

It is easily to understand, 
that each row of this formula 
except the last one represents 
a partial product of the multi-
plicand Y to the bit of the 
multiplier X. Each bit product 
xiyj can be calculated by a 
single AND gate. The partial 
product summation consists 
in the addition of the bit pro-
ducts with the equal weights 
(columns) considering the 
carry bits from the low bits. 
The network, which calcula-
tes this formula, is the 
parallel MPU, and it is shown 
in Fig.3.8. To build this MPU, 

n2 AND gates, n2 – 2n one bit full adders FA and n half-adders HA are of demand. 

Fig.3.8 
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The MPU components form an array. For this feature, this kind of MPUs is 
usually named as the array multiplier. For an nxn array multiplier the longest 
path from input to output goes through 2n adders, and corresponding worst-case 
multiply time is estimated as 2ntA, where tA is the full adder delay. This means that 
the array multiplier speed is in 2 times less than the adder speed, considering that 
the n-bit adder delay is ntA. 

After nxn multiplication the 2n-bit result occurs. When calculations contain a 
set of products, then the data width can increase dramatically. To prevent this 
process, products are usually truncated to n high bits. In this situation, the array 
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multiplier can be abridged, that minimizes its hardware volume. In Fig.3.8 the 
dotted line shows the truncation line, which separates such 
abridged MPU. To provide the result correctness, n+m 
columns of the array are left, where m=2, 3, 4, depending on 
n.    

Some algorithms are available for multiplication of 
signed binary numbers. The straightforward way to carry out 
such multiplication consists in complementing the multi-
plier and/or multiplicand if negative, multiplying the two 
positive binary numbers, and complementing the product if 
it should be negative. The procedure for multiplying signed 
2's complement binary fractions is widely used, which requi-
res only the ability to complement the multiplicand. It is the 
same as for multiplying positive binary fractions, except that 
one must be careful to preserve the sign of the partial product at each step. If the 
sign of the multiplier is negative, the multiplicand should be complemented in 
the step of multiplying to the sign bit. The hardware is almost identical to that 
used for unsigned MPU, except a complementer unit must be added for the 
multiplicand. Consider an example of multiplying Y = 5/8 = 0.101 to X = 
-3/8=1.101. The multiplication steps are shown in the Table 3.4. 

Table 3.4 
Data Vari-

able 
1.101 X 
0.101 Y 

0.000000 П0
0.000101 +Y/8 
0.000101 П1
0.0101 +Y/2 
0.011001 П3
1.011 –Y 
1.110001 P=П4

 

In the application specific processors, the hardware multiplier to a constant is 
widely used. Due to its specific structure, such a MPU provides both high speed 
and small hardware volume. Usually this MPU is built as an adder tree. It sums 
the multiplicand, which is shifted to different digit numbers, according to the 
weights of a 1 in the binary representation of the constant. Therefore, the MPU 
contains in average n/2-1 n-bit adders. This figure can be decreased to n/3-1, 
when both adders and subtractors are used, and when the constant is decompo-
sed to bits 1, 0, –1. Consider MPU, which multiplies to the fraction C=0,110111. 
By subtracting a 1 from LSB, it can be transformed to 0,111001̄ . In such a man-
ner, this result is transformed to 1,001̄001̄. Then due to this multiplier represen-
tation, the product can be factorized as P = XC = X – 2–3(X+2–3X).  

Fig.3.9 
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The derived block diagram of MPU is shown in Fig.3.9. Here the 
small black rectangles mean the right shift of the data to the 
respective bit number. It is easy to prove that the use of such 
constant decomposition has decreased the adder number from 4 to 
2, which shows its high effectiveness. 

MPU is easily described by VHDL, because the multiply 
operator is inferred by the synthesizer as MPU (if the operand types 
allow the use of this operator). For example, the operator 

P<=Y*X; 

represents the MPU, which gives the n+m–bit product P from  n–bit multiplicand 
Y and m–bit multiplier X. If X and Y are of unsigned or natural type, then we 
derive the unsigned MPU, if they are of signed or integer type, then the MPU with 



50                                             3. Networks for arithmetic and logic operations  

sign will be synthesized. If X or Y is a constant, then the compiler will try to 
synthesize the constant MPU. Some synthesis constraints make the synthesizer to 
implement the pipelined MPU, which has higher throughput. 

3.4 Binary dividers 
In most of computers, division is implemented as a subprogram, because it is 

used rarely. In high-end CPUs, some microcontrollers and ASICs the binary divi-
ders are used. Just as binary multiplication can be carried out as a series of add 
and shift operations, division can be carried out by a series of subtract and shift 
operations. In one division scheme, the divisor is shifted right, the dividend is 
motionless before each subtraction. In another one, the dividend is shifted left, 

and the divisor is fixed. Consider the binary 
divider example for positive numbers, based 
on the second scheme. It contains 2n+1-bit 
dividend register RGY, n-bit divisor register 
RGX, quotient register RGZ, subtractor SM, 
as shown in Fig.3.10. The shift register RGY is 
divided to the high RGYh and low RGYl parts. 

On each step i the divisor X is subtracted 
from the remainder Yi in RGYh, Yi – X = Si. If 

the result overflows, then the carry out bit is CO = 1. That means that the recent 
bit of the quotient is a 0. Otherwise, the result bit is a 1 and Si > 0 is stored in 
RGYh. After that, RGY is shifted left, and the bit of the quotient is shifted in RGZ. 
The first step proves that RGYh content is less than the divider. Otherwise, the 
quotient overflow occurs. After n steps in RGYh the remainder remains, and in 
RGZ the quotient is. To get the remainder at its correct position, the register RGY 
is not shifted at the last step. Consider X = 1101 = 13, Y = 10000111 = 135. The 
state chart of the division process is shown on the Table 3.5. We get the correct 
result Z = 1010 = 10 and remainder 101 = 5, i.e. 135/13 = 10 with a remainder 5. 

Fig.3.10 
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This network hardware can be minimized, when the quotient bits are shifted 
not in RGZ but in RGYl substituting the low bits of the dividend (see the dotted 
line in Fig.3.10). The speed can be increased, when shift and subtraction are 
performed in a single cycle. The shift is done by the additional multiplexor, which 
selects shifted output of SM or RGYh to load in RGYh depending on signal CO. 

This multiplexor can be removed, 
when another division schema is 
used. In it, the subtraction result 
(even the negative) is stored in 
RGYh in each step, and in the next 
step, to the negative remainder the 
dividend is added but not sub-
tracted. 

Table 3.5 

The binary divider achieves the 
maximum speed when it is built as 
an array LN. Such a divider con-

Cycle RGYh RGYl CO RGZ Operation 
0 01000 0111 0 0000 initialize 
1 01000 0111 1 0000 –X 
2 10000 1110 0 0000  shift 
3 00011 1110 0 0000 –X 
4 00111 1100 0 0001  shift 
5 00111 1100 1 0001 –X 
6 01111 1000 0 0010 shift 
7 00010 1000 0 0010 –X 
8 00101 0000 0 0101 shift 
9 00101 0000 1 0101 –X 
10 00101 0000 0 1010 shift, end 
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sists of n stages; each of them subtracts the divisor from the remainder calculated 
in the previous stage, and derives a single result bit.  

The division of signed data consists in complementing the divisor and/or 
dividend, if negative, division the two positive binary numbers, and comple-
menting the quotient if it should be negative. However, some algorithms combine 
the data complementing with the division flow. 

The division is simply described in VHDL by the operator slash "/". But the 
synthesizer infers this operator only as a shifter, when the divisor is equal to 2i. 
Therefore, the binary divider should be described carefully as its behavior. The 
simplest unsigned divider of 8-bit dividend Y to 4-bit divisor X deriving 4-bit 
quotient Z is described by the following process statement 

process(X,Y) 
 variable yi: unsigned(8 downto 0); 
 variable si: unsigned(4 downto 0); 
begin       
 yi:=Y&'0'; 
 for i in 0 to 3 loop   
  si:=yi(8-i downto 4-i)-X;   yi:=yi; 
  if si(4)='1' then 
   Z(3-i)<='0';  
  else 
   Z(3-i)<='1'; yi(8-i downto 4-i):=si;     
  end if; 
 end loop;  
end process; 

where the for – loop statement implements 4 division iterations, each of them 
derives a single result bit. Note that all the signals are of unsigned type, which is 
declared in the IEEE.Numeric_Bit package. When compiling, the for – loop state-
ment is unrolled, and each iteration is inferred as a stage of the array divider. 

3.5 Hardware pipelining 
Pipelining is a special processing method, which makes it possible to 

execute simultaneously several computations on the same hardware by using its 
different parts. In this case, the computation is divided into execution steps and 
different steps are executed by different pipeline stages. A new computation is 
started before the old one finishes its execution. Several computations co-exist in 
the same pipeline, each of them being in a different execution phase. Hardware 
pipelining and software pipelining are distinguished. The first one is usually 
implemented in the datapath and in the control network of the computer. The 
second one is arranged at the software level, and it provides the effective 
utilization of the hardware pipelining, or plans the computations in separate units 
in the pipeline manner.  

Consider the datapath, which implements the operation S = AX + Y. The 
datapath contains the input and output registers RGA, RGX, RGY, RGS, 
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multiplier MPU and adder SM (see Fig. 3.11(a)).  The minimum clock cycle for 
this network is equal to the maximum delay 
between the outputs of the registers RGA, 
RGX, RGY, and input of the register RGS, and 
is estimated as      

TCLK1 = tM +tS ≈ 3tS.  

We decompose the operation to two sequ-
ential steps: P = AX and S = P + Y. The result 
of the first step is stored in the intermediate 
register RGP, named as the pipeline register. 
The additional pipeline register RGY2 is 

needed to delay the operand Y to a single clock. The resulting pipelined datapath 
is shown in Fig. 3.11(b). Its minimum clock cycle is estimated as TCLK2 = max(tM, 
tS) = tM ≈ 2tS. This means that the hardware pipelining provides the 1,5 times 
increase of the clock frequency of this datapath.  

When the calculations are planned properly, i.e. the input data loaded in the 
input registers in each clock cycle, then the pipelining provides the respective 
throughput increase of this datapath, which asymptotically achieves in our 
example the figure 1,5. To find out such a calculation plan, usually the 
reservation table is used. It is, in principle, a timing diagram, which shows the 
flow of data through the data path units. Each row of this table represents a data 
path unit and each column represents a time step. When the mark is set in a cell 
of the table, it means that the pipeline stage represented by this row is used 

during the execution step indicated by the column. A 
set of marks filling the table represents the execution 
pattern for a given computation.  

Consider the datapath in Fig. 3.11(b) with the 
shortened register RGY2 (i.e. it is absent). Then the 
possible reservation table filling is in table.3.6. Here 
marks X and * mean the data of two neighboring 
computations. We see that RGY has to store the 
operand Y for two cycles to provide the correct 
addition operation. As a result, we have not any profit 
of the pipelining. Table 3.7 is the reservation table, 
which considers the register RGY2. In this situation, 
the computations are made in the pipelined mode 
providing the high throughput.  

By the deep pipelining, the logic network is cut 
several times by the pipeline registers, minimizing 
the critical path. Therefore, the hardware pipelining 
is widely used in modern computers, first of all, 
because it provides the increase of the clock 
frequency. Other goals are the signal integrity in the 

circuits, network hardware reusability, power consumption minimizing. The 
hardware pipelining is one of the principles of the RISC processor architecture. 

Fig.3.11 
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Table 3.6 
Step 1 2 3 4 5 
RGA X  *   
RGX X  *   
RGY X X * *  
MPU X  *   
RGP  X  *  
SM  X  *  

RGS   X  * 
 

Table 3.7 
Step 1 2 3 4 5 
RGA X *    
RGX X *    
RGY X *    
MPU X *    
RGP  X *   

RGY2  X *   
SM  X *   

RGP   X *  



4. Control networks 

4.1 CPU control unit 
In the previous chapter it was mentioned, that the CPU consists of the control 

unit (CU) and the datapath, and the problems of the datapath design were 
enlighten. This chapter is devoted to the problems of the CU design. The von 
Neumann model of a computer is based upon a repeating four-cycle procedure 
to execute a program.  

During the first cycle, named as instruction fetch, the CPU sends a signal to 
MU, telling it which instruction is needed. MU responds by sending the 
instruction to the CPU, where it is held in CU.  

During the instruction decode cycle, the process is held of interpreting the 
instruction and determining what needs to be done within the CPU to implement 
this operation. The derived information is sent to the datapath from the CU. 

The third cycle is the instruction execute. After the datapath receives the 
information from the CU, the instruction may be executed. The datapath receives 
the necessary input data, either from MU or a local storage within the datapath 
itself, and outputs the results.  

In the storage cycle, the results are stored back in MU. 
Every instruction in the program is treated using the same sequence of 

procedures. CPU repeats the same four cycles so long as the program is running. 
The main difference among the instructions is handled by changing the function, 
performed by the datapath network. Some instructions, which perform the 
program branches, may not control the datapath at all. 

All the mentioned above functions except ones implemented by the datapath 
hardware are to be performed by the CU. These functions can be divided into 
categories depending on the purpose and target of them. The fetching functions 
control the instruction flow. They are responsible for fetching the next instruction 
depending on a set of conditions. They are condition branches, subroutine calls, 
etc. To recognize which of the functions have to be computed, CU implements an 
instruction decoding function. The datapath control functions provide the 
proper control flow for the arithmetic and logic operations in the datapath. The 
addressing functions provide the proper data addressing depending on the 
given addressing mode. Some functions handle with the memory 
management including virtual memory support, page mapping and memory 
cashing.  Tasking functions provide the simultaneous computing by CPU of a set 
of tasks, for example, in the multiprogamming mode. Here the context 
switching functions take place.  

An exception is an interruption of the normal flow of instruction processing. 
There are two situations, in which this occurs. The first, which is called as a trap, 
occurs when CPU recognizes that the execution of an instruction has caused an 
error of some kind (overflow, fall in the protected address area, etc.). The second, 
which we call an interrupt, occurs when a device external to CPU signals that a 
certain event should be processed. Usually CPU has hardware support for 
interrupts and traps, which we concern as the CU function as well.  
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4.2 CPU instruction set 
The instruction word can be decomposed to operational part, named 

opcode, and address part. In the opcode the code of the function is placed, which 
implements the CPU when this instruction runs. Obviously, if more bits are used 
in the opcode, then more distinct instructions can be supported. The cleanest 
approach is to use a fixed number of opcode bits for all instructions. In practice, a 
designer will recognize that certain operations are much more common than 
others, and its opcodes can be shorter.  For example, if we have determined 4-bit 
opcode for the most commonly used instructions then 16 possible bit patterns are 
available. 15 of these are used for the most common instructions, and 16-th is 
used to indicate all of the other instructions. Additional bits then attached to the 
instruction format so that these less common instructions can be distinguished. 
Due to this principle, the Intel complex instruction set computer (CISC) opcodes 
were selected, which number of opcode bits ranges from 5 to 19.   

On the other hand, the reduced instruction set computer (RISC) designs 
strongly favour short opcodes and small number of uniform instruction formats, 
preferably all of the same size. The regularity of these formats simplifies the 
instruction decoding mechanism and pipelined instruction implementation.  

The information about operand and result addresses, and place of the next 
instruction stays in the address part. Four, three, two, one, and zero address 
instructions are distinguished depending on the number of addresses, which are 
given in the instruction. One kind of zero address instructions distinguishes the 
implicit operand address, for example, a separate register like accumulator. The 
instructions of another kind carry in itself the, so called, immediate operand.     

The address number depends on the addressing spaces and it is usually 
optimized when the instruction set is selected. One hand, the many address 
instruction can substitute a set of short instructions, providing the performance 
increase. The other hand, the modern MU address spaces afford the address 
length up to four and even eight bytes, and many address instructions take a lot 
of memory space and decrease the instruction access time. Therefore, the instruc-
tion format selection is a complex optimization task. It is usually finished by 
comparing the time of the testbench program implementation on the CPU models 
with different instruction sets. 

One of the ideas of the RISC computers consists in division of the instructions 
to ones, which handle only with the datapath, and others, which do not. The first 
type instructions are three and four address instructions. Here the addresses of 
the register array are used, which are 4-5-bit width codes (sometimes up to 7). 
And the second type instructions are zero, one, and two address instructions. In 
the two-address instruction, first address points to the MU cell, and the second 
one is the register address. Such instruction provides the data loading to or 
storing from the register. 

The address field can represent either direct address or code, which plays the 
distinguished role in the address calculation, i.e. for the indirect addressing. CPU 
can provide a lot of addressing modes. In choosing a set of addressing modes, the 
issues of instruction complexity versus utility arise as well. 
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  4.3 Control unit structure 
At the beginning of the chapter, a set of functions of the CU was declared. 

These functions can be implemented in the separated and relatively independent 
units. The CU of the common CPU contains the instruction fetch network IFN, 
address and memory management unit AMMU, interrupt handling unit IHU and 
finite state machine (FSM) or microprogram controller (MPC) for the control 
algorithm implementation. Its approximate structure is illustrated by Fig.4.1. The 
instruction fetch network consists of program counter (PC), instruction register 
(IRG) and instruction decoder DC. IR contains opcode field OP and address fields 
A1, A2. 

IRG holds the binary instruc-
tion, which opcode is decoded by 
the instruction decoder. PC is 
used to maintain the flow of the 
program by counting the instruc-
tions as they are executed. It 
contains the memory address for 
the next instruction that is 
retrieved and executed by CPU. 
The instruction address from PC 
is fed to the program memory, 
and the corresponding data word 
is transferred to IRG. If the 
instruction order is plain, then the 

next address is PC = PC + φ, where φ is the spacing needed to get the next 
instruction. For example, when the instruction length is 4 bytes then φ=4. 
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Once in the IRG, the instruction is decoded by DC, which causes the instruc-
tion to be carried out. When the procedure is finished, the instruction is retired, 
and the next instruction is fetched from the memory and transferred to the IR. 
When the branch instruction is decoded then depending on the branch condition, 
the code from the address field is loaded to the PC. Then the next instruction is 
selected from the cell with the branch address. When the subroutine call 
instruction is decoded, then before the call address is entered PC, its content, 
increased to φ, is stored into the address stack as the return address.  

The address and memory management unit AMMU performs the data 
address generation using a set of addressing modes like direct, indexed, based, 
indirect addressing and its combinations. It provides for efficient memory access 
by separating the notion of logical and physical memory accesses. It is respon-
sible for the context storing when the context switching occurs.  

FSM or MPC generate the main control signal stream both for datapath and 
for other units of the CU providing the correct implementation of the decoded 
instruction. FSM is a sequential logic network, which implements some control 
algorithms. Its state depends on the previous one and on the input signals. Its 
outputs depend logically on its state and, may be, on input signals. MPC is a kind 
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of FSM, which state is the state of the microinstruction address counter. Its 
output signals are the bits of the microinstruction, which is selected by the 
microinstruction address counter from the microprogram MU. MPC is simple for 
designing and expanding of its functions, but its speed is comparatively small. 
FSM is hard to design, but it is the fastest sequential machine with small energy 
consumption. Because the FSM synthesis is fully implemented by CAD systems, 
most of CPU is based now on FSM. 

The interrupt handling unit fixes the interrupt signals and trap conditions. 
After that, it provides selection of the signal with the highest priority and call of 
the respective interrupt subroutine. By this process, the CU provides correct 
program flow abrupt, storing the CPU state and restoring this state after the 
return from the interrupt subroutine. 

CUs are divided into central and distributed CUs. Above the structure of 
central CU was described. Such CUs are used in the simple CPUs and microcon-
trollers. In the distributed CU, the master and slave CUs are distinguished. The 
master CU decodes the opcode and gives only the general control signals. These 
signals control the slave CUs, which implement the direct control of the 
instruction implementation in parts of the datapath, address and memory 
management unit and others units. For example, the separate slave CU can 
control the datapath for the division and square root implementation. In the next 
chapters, the CU parts will be discussed in details.  

    4.4 Instruction fetch networks 
All the CPU instructions are divided into two categories depending on the 

way, how the next instruction address is formed. The instructions of the first type 
do not violate the natural order of the instruction flow. After finishing the instruc-
tion in the j-th cell, the CPU starts the implementation of the instruction in the 
j+1-th cell. They usually are data moving, arithmetic and logic instructions.  The 
second type instructions make the conditional or unconditional jumps. For 
example, the instruction JZ A, which is placed in the j-th cell, checks the condition 
flag Z. If Z =1 then a jump to the instruction in the cell A is performed. If Z = 0 
then a new instruction is one from the cell j +1. The unconditional jump instruc-
tion JMP A behaves as the instruction JZ for which Z is always a 1. 

The diagram of the subnetwork, which implements these jumps, is shown in 
Fig.4.2. If the instructions JMP or JZ are computed, and the jump condition satis-

fied (the trigger Z is in the state 1) then the next 
instruction address is formed by writing the 
address from the instruction in the PC. In other 
cases the next instruction address is formed by 
addition a 1 to the PC. The signal ST strobes the PC 
and it is formed by FSM in the cycle of the PC 
modification. In the network in Fig.4.2 a single flag 
Z is analyzed for jumping. In the real CPUs a set of 
flags are used for this purpose. For example, in the 
microprocessor I8080 the jump is performed using Fig.4.2 
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four conditions Z, C, N, and V, and their negations 
(see Table 4.1). The three byte jump instructions 
contain an opcode byte 11xxx010, and two bytes of 
the jump address, where xxx is the condition code. 
One of possible subnetworks for implementation 
of this jump mechanism is shown on Fig.4.3.  

In the previous example, a 1 is added to the PC 
because the MU cell is considered to have a length 
of a single instruction. Most of CPUs have instruc-
tion sets with the variable length. This length is 
usually proportional to 8 bits. In this situation, the 
instruction fetch goes by one, two and more 
bytes; each of them has its own address. 
The instruction address is equal to its first 
byte address. Note that in many CPUs the 
big-endian byte addressing of the word is 
used, where the most significant byte is 
stored in the lowest addressed byte. Then 
the instruction address is equal to its last 
byte address. Anyway, the next instruction 
address is higher to φ, where φ is the exe-
cuted instruction length in bytes. As a 
result, to form the next instruction address the instruc-
tion decoder has to generate the code of the instruction 
length φ, which is used as an increment to the PC. 

Table 4.1 
Instruction 
mnemonics 

Jump con-
dition 

xxx 

Z = 0 000 JNZ 
Z = 1 001 JZ 
C = 0 010 JNC 

JC C = 1 011 
V = 0 100 JPO 

JPE V = 1 101 
N = 0 110 JP 
N = 1 111 JM 

A simple network to do this is shown in Fig.4.4. The 
least significant bits of the PC are implemented as a 
register RG with multiplexor and adder SM at its input. 
The address increment code φ from some instruction 
decoder output is added to the register content. The 
adder overflow is used as an increment signal to the 
counter CTR, which form the most significant bits of 
the PC. When the jump is implemented, then the jump 
address is loaded to counter and register. 

In modern CPUs, the instructions of the length from 1 to 12 bytes are used. 
The data and instruction bus width is equal to 4, 8 and even 16 bytes. Therefore, 
the instruction information has to be read as words of respective length of 4, 8, 16 
bytes in a buffer, and then the executed instruction has to be selected from this 
buffer. Such a buffer is named as a prefetching buffer. In this buffer, a set of 
instructions can be stored except one under execution. Because this buffer has the 
high speed, it plays the role of a cache memory between CPU and slower MU. It is 
very important in pipelined and superscalar CPUs. But a bad situation occurs, 
when the instruction length is higher than one of the buffer, or the address of the 
long instruction is not aligned to the word bound. Then this instruction is read 
from the buffer in two steps as higher and lower parts. 
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    4.5 Finite state machines 
FSM is a sequential logic network, which implements the given control 

algorithm as the predefined sequence of its states. Its next state Si+1 depends on 
the previous one Si and on the input signals Xj. Its outputs Yp depend logically on 
its state Si. Such a FSM is named as a Moore FSM. When its outputs Yp depend 
both on its state Si and on input signals Xj, then it is named as a Mealy FSM. The 
FSM algorithm is fully described by its state graph (state diagram) or by FSM 
chart. Modern CADs synthesize the FSM from its state graph automatically. 

The nodes of the state graph represent the FSM states, and its directed edges 
represent the branches from one state to another. In the Moore state graph the 
node Sk is labeled by variables YP, separated by a slash "/", which output a 1, 
when FSM stays in this state. The edges are labeled by the input labels which are 
the Boolean functions of the input variables, and which derive the branch 
conditions. They can be labeled by the output labels that are output variables, 
when it is the Mealy state graph. In Fig.4.5 is an example of the state graph, 
which has both Moore and Mealy outputs.  

If we label an edge XiXj/YpYq, this means that if 
inputs Xi and Xj are 1 (we don't care what the other 
input values are), the outputs Yp and Yq are 1 and other 
outputs are 0, and we will traverse this edge to go to the 
next state. For example, in the graph in Fig.4.5 the state 
Sk remains the same when X̄1X̄2 = 1 and it is exchanged 
to the state Sk when X1 = 1, providing the output signal 
Y1 = 1. In order to have a completely specified proper 
state graph, in which the next state is always uniquely 

defined for every input combination, we must place the following constraints on 
the input labels for every state Sk: 

Fig.4.5 

X̄1X̄2

Sp Sq

X1 X2

X̄3

X3/Y2,Y3

1/Y1

Sk/Y3

If Fi and Fj are any pair of input labels (Boolean functions) on edges exiting 
state Sk, then Fi ·Fj =0, if i≠j. 

If n edges exit state Sk, and they have input labels F1, F2, …, Fn, respectively, 
then  F1∨F2∨… ∨ Fn = 1. 

The first condition assures us that at most one input label can be a 1 at any 
given time, and the second condition assures us that at least one input label will 
be a 1 at any given time. Therefore, exactly one label will be 1, and the next state 
will be uniquely defined for every input combination. For example in Fig.4.5 
conditions are satisfied for all the nodes. 

As an alternative to state graphs, a state machine flowchart, or FSM chart is. 
Just as flowcharts are useful in software design, they are useful in the hardware 
design of digital systems. The state in it is represented by a state box. It contains a 
state name, followed by a slash "/" and an optional output list. A state code may 
be placed outside the box. A decision box is represented by a diamond-shaped 
symbol with true and false branches. The condition placed in the box is a Boolean 
expression that is evaluated to determine which branch to take. The conditional 
output box, which has curved ends, contains a conditional output list. 
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An FSM chart is constructed from FSM blocks. Each of them contains exactly 
one state box, together with the decision boxes and conditional output boxes, 
associated with that state. Block has one entrance path and one or more exit 
paths. Each block describes the operation during the time that FSM is in one 
state. A path through a block from entrance to exit is referred to as a link path.  

Certain rules must be followed when constructing an FSM block. First, for 
every valid combination of input variables, there must be exactly one exit path 
defined. This is necessary since each allowable input combination must lead to a 
single next state. Second, no internal feedback within a block is allowed.  

It is easy to convert a state graph to an equivalent FSM chart. The chart, 
which is equivalent to one in Fig.4.5, has three blocks – one for each state. The 
Moore output Y3 is placed in the state box Sk, since it does not depend on the 
input. Some condition nodes X1, X2 have a single output. This is explained by the 
fact that the Mealy outputs Y1, Y2 appear in conditional output boxes, since they 
depend on both the state and input. The resulting FSM chart is shown in Fig.4.6.  

The FSM network is searched as the network shown in 
Fig. 1.6. It contains a set of triggers and LN. Triggers store 
the FSM state, orher words, they form a state register. The 
LN consists of two parts. One of them generates signals Di, 

which are the trigger stimulating functions. Another one 
outputs the resulting signals Yj.  

First of all, the states Sk are given the concrete values. 
There is a set of methods of coding the states. The method 
selection depends on the number of states, whether the 
FSM is optimized for speed or hardware volume, or error 
immunity. The one-hot coding means that for n state FSM 
the n-bit wide state word is selected, in which a 1 stays in 
the k-th position, when coding the state Sk. For example, 
FSM with the state graph in Fig.4.5 would have the state 
coding 001, 010, 100. This coding is usually used when the 
state number is small. It provides usually the highest speed, because the trigger 
stimulating functions occur to be rather small. When the state graph contains the 
long chains of nodes, the state register can be implemented as a shift register. 

Sk/Y3
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Y1

0

1
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X2
0

1

Sq

X3
1 0 

Y2,Y3
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00

01 10

The natural number coding is used in most of cases, especially, when the state 
graph contains the long chains of nodes. In the example on Fig.4.6, the codes are 
00, 01, and 10. In this situation, the state register behaves as a counter. When the 
states are coded by the Gray codes, then in most of state branches, only a single 
bit of the code is exchanged. This serves both to LN minimization and to error 
immunity. In the combined coding, the code word is divided into 2 or more fields, 
each of them are coded by some coding method. Here the advantages of different 
methods can be used. For example, when the code word has two n-bit fields, 
which have one-hot coding, then such a code word can code up to n2 states. 

Then, the state table is built. This table has the columns of present state, next 
state and present output. The next state column contains the subcolumns, which 
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are coded by the bits of the input signals. These subcolumns show what next state 
is for the given value of the input variable. The present output column has the 
similar form. Table 4.2 is the state table for the FSM chart in Fig.4.6.  

From the next state columns of the state table the trigger stimulating functi-
ons are derived, as signals that force the D triggers of the state register to be set:  

Table 4.2 

Next state, X3X2X1= Present output, X3X2X1=  Present state 
Z2Z1 000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111 

Sk  00 00 01 10 – 00 01 10 – Y3
Sp  01 10 Y1
Sq  10 10 00 10 00 0 Y2, Y3

 

D1 = Z̄2Z̄1(X̄3X̄2X1∨X̄3X2X1∨X3X̄2X1∨X3X2X1) = Z̄2Z̄1X1; 
D2 = Z̄2Z̄1(X̄3X2X̄1∨X̄3X2X1∨X3X2X̄1∨X3X2X1)∨Z̄2Z1∨Z2Z1∨Z2Z̄1X̄2 = 
     = Z̄2Z̄1X2∨Z1∨Z2Z̄1X̄2. 

Note that the don't-care states in the 
combination  X2X1 = 11 and  in  the state  
Z2Z1 = 11 (for D2) are assigned as a 1. The 
output functions are derived from the 
present output columns as well: 

Fig.4.7 
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Y1 = Z1;  Y2 = Z2X3;    Y3 =  Z̄2Z̄1∨Z2X3;  

The resulting FSM network is shown in 
Fig.4.7.  

Once the state graph or the FSM chart is built, then the FSM can be easily des-
cribed in VHDL and then its network can be synthesized by a compiler. Here a 
case statement can be used to specify what happens in each state. Each condition 
box corresponds directly to an if statement. The following program describes 
FSM with the chart in Fig.4.6. 

entity FSM1 is port(C,X1,X2,X3:in bit; 
                                 Y1,Y2,Y3:out bit); 
end FSM1; 
architecture beh of FSM1 is 
 signal S,D:bit_vector(0 to 1);         -- state codes 
begin 
    LN:process(X1,X2,X3,S) begin              --LN model 
  Y1<='0';Y2<='0';Y3<='0';  --usual output states 
  case S is 
  when "00" => Y3<='1';    -- current state Sk 
   if X1='1' then 
                    D<="01"; --next state 
                    elsif X2='1' then 
      D<="10"; 
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    else        D<="00" 
   end if; 
  when "01"=> D<="10"; Y1<='1'; -- state Sp 
  when others=> if X3='1' then    -- state Sq 
    D<="00";Y2<='1';Y3<='1'; 
   else        D<="10";  
   end if; 
  end case; 
 end process; 
 RG:process(C) begin                  -- state register 
  if C='1' and C'event then 
   S <= D; -- update state on rising edge of C 
  end if; 
 end process; 
end beh;  

The first process represents the LN of FSM, and the second process updates 
the state register on the clock. The signals Y1, Y2, Y3 are turned on in the appro-
priate states, and they must be turned off when the state S changes. A convenient 
way to do this is to set them all to a 0 at the start of the process. 

The methods used to derive either state graph or FSM chart for a CU are 
similar. First, we should draw a block diagram of the system we are controlling. 
Next we should define the required input and output signals to the CU. Then we 
can construct an FSM chart or a state graph that tests the input signals and 
generates the proper sequence of output signals. 

Consider an example of the CU design for the multiplier unit, shown in 
Fig.3.7. Its operation is described by the Table 3.3. Let the unit starts his opera-
tion by the signal Start. The output control signals are register reset R, shift 
signal Sh, register loading L, result ready Rdy. Because the output signals depend 
only on the FSM state, the FSM is of Moore type, except the reset R. The 
multiplier registers shift data not in the cycle, when the shift signal enters, but in 
the next one. And the shift signals have to be generated in the previous state 
comparing to the Table 3.3. The resulting state graph is shown in Fig.4.8. Let the 
state coding is coding by natural numbers. The Table 4.3 is the resulting state 
table. The trigger stimulating functions are the following: 

D1 = Z̄1;  D2 = Z̄2Z1∨Z2Z̄1 =  Z2 ⊕Z1; D3 =  Z3 ⊕(Z2Z1); D4 =  S̄t̄ ā r̄ t·(Z3Z2Z1); 

The output signals are:  

L = Z̄4Z̄1;  Sh = Z1; Rdy =  Z4; R=Start·Z4. 
 
 
 
 
 

Fig.4.8 
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Table 4.3  We can see that this FSM behaves as a counter, 
and really, it is that. Therefore, such FSM can be 
based on the counter network, and on the contrary, 
counters can be synthesized as FSMs. 

When a FSM becomes large and complex, it is 
desirable to divide the machine up into several 
smaller FSMs that are linked together. Each of that 
FSM is easier to design and implement. Also, one of 
the submachines may be "called" in several different 
places by the main FSM. This is analogous to divi-
ding a large software program into procedures that 
are called by the main program. Fig.4.9 shows the 
FSM charts for two serially linked FSMs, which have 
the common clock source. The main FSM A execu-
tes a sequence of "some states" until it is ready to 
call the submashine FSM B. When state SA is reach-
ed, the output signal YA activates FSM B. FSM B 
then leaves its idle state and executes a sequence of 
"other states". When it is finished, it outputs signal 
ZB before returning to the idle state. When FSM A 
receives Z

B

BB, it continues to execute "other states".  
As an example of using linked FSMs the CPU 

can be considered, which contains the multiply unit 
in Fig.3.7 as a component with the local FSM, which 
the state graph is shown in Fig.4.8. When the mul-
tiplication operation is decoded, the main FSM 
sends to the local FSM the Start signal, which runs 
the multiplication. After multiplication finishing, 
the local FSM falls in the idle state S9 and returns 
the signal Rdy, which continues the operation of the 
main FSM. 

 4.6 Microprogram controllers 

CISC computers obtained their large instruction set by using a technique 
called microprogramming. The microprogram approach breaks down every 
basic operation into a microinstruction. The microprogram is written in the 
similar way as the computer program is. But the microcode instructions are one 
level deeper and more primitive than assembly language. In fact, an assembly-
level instruction is created by using a sequence of micro-operations. Micropro-
gramming allows the designer to create an instruction by combining the 
operations at the microcode level.  

The block diagram of the usual microprogram controller (MPC) is shown in 
Fig.4.10. Each microcode sequence is stored in a microcode ROM. When CPU is 
given an instruction such as load word, the respective microcode sequence is 
accessed. This sequence includes the operations: start, get address data from 
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given register, send address to MU, get data from 
MU, send data to given register, end.  

By this process, the instruction opcode from 
IRG is sent to the sequencer SEQ. The sequen-
cer is a unit of the MPC, which determines the 
location of the microcode corresponding to the 
specified instruction, reads the first micro-
instruction, then the second, and so on, until the 
instruction sequence is completed. The type of 
the microinstruction, like normal flow, conditio-
nal branch, subroutine call, etc., as well as the 
branch address information, is derived from 
special fields of the microinstruction. The multiplexor MUX selects the input 
signals COND, which serve as the conditional branch signals.  

Fig.4.10
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The control fields of the ROM are divided to ones with the horizontal coding 
Ch, and ones with the vertical coding Cv. By the horizontal coding, each 
control signal has its own bit of the microinstruction word. The disadvantage of 
this coding is that for complex CPUs the microinstruction is too long (hundreds 
of bits). By the vertical coding, a set of control signals, which could not occur as 
a 1 simultaneously, are coded by a single bit field. They are generated by the 
decoder of this field. As a result, the microinstruction length is much shorter. But 
the critical path in the network is increased in the decoder delay, and some 
independent control signals have to be generated in sequence. All this decreases 
the CPU speed.  

The microprogramming is a powerful approach for increasing the instruction 
set of CPU. Adding a new instruction simply requires that additional code be 
written and stored in the ROM, so that modifications to the instruction set do not 
require extensive hardware changes. Comparing to FSM, the main MPC 
drawbacks are the following. The MPC could not analyze large set of input signals 
simultaneously (usually only a single condition), the number of independent 
output signals (by the horizontal microprogramming) is limited by the 
microinstruction width. Therefore, the microprogram can grow dramatically by 
the cost of microinstructions, which prove a set of conditions and output many 
signals (by the vertical microprogramming) in sequence, which is followed by the 
unnecessary decrease of the CPU speed. The control of two executed instructions 
is impossible, because only a single microprogram could run in a time. Therefore, 
the parallel execution of the program in CPU, for example, by the pipelining, is 
impossible too. The critical path in the MPC includes the condition selector, 
sequencer, address decoder, ROM array, microinstruction field decoder, etc. As a 
result, the MPC is usually too slow comparing to the FSM. The easy way of the 
microprogram writing is not actual now, because all the modern digital hardware 
CADs support the FSM design, and do not provide the microprogramming. 
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4.7 Example of CPU design 
Consider the design of CUs for the simplest but convenient CPU. It contains 

RAM, three-port FM and a simple ALU, named LSM (see Fig.4.11). The access to 
the asynchronous RAM needs the 13 bits of the address A (when the RAM volume 
is 8K words) and the control signal WR. The access to the FM needs three 
addresses AB, AD, AQ and write signal WR. When the FM volume is 8 words, 
then AB, AD, AQ are 3-bit wide busses. The 3-bit wide control code F controls 
LSM, which performs up to 8 operations. The shifter SHU performs the right shift 
to a single bit. CU contains instruction fetch network (IFN) based on the program 
counter (ICTR) and instruction register (IRG), and on FSM with the flag register 
(CCRG). 

Consider CPU which per-
forms arithmetic (AO) and 
logic (LO) operations, data mo-
ving instructions from FM to 
RAM (FR) and in reverse order 
(RF), conditional (JC) and un-
conditional (JMP) jumps, input 
(IN) and output (OUT) ins-
tructions. 4-bit wide code con-
trols the arithmetic and logic 
operations (3 bits for LSM and 
one for SHU, see Table 4.3). 
Three 3-bit wide address fields 
needed for the FM. The 
amount bit width is 13 bits, 
which gives 24

x23
x23

x23 = 213 
different codes. In the instruc-
tions FR and RM the moving 
direction, FM address are 

assigned, which gives  2x23
x213 = 217 different codes. 

Instructions JC break the natural instruction flow, 
when the given condition is satisfied. Consider four 
such conditions (RZ – zeroed result, SI – negative result, 
CO – carry output and QO – shifted out bit) with its 
inversions, then up to 8x213=216 different JC instructions 
may occur, where 213  is the jump address number. The 

IN and OUT instructions give the moving direction (to CPU or from CPU) and the 
peripheral unit address (PU). The peripheral unit number is considered to be less 
than the RAM volume, and then 2x213 = 214 such different instructions may be.  

The resulting amount of the instructions is estimated as 218. Then for the 
instruction code at least 3 bytes are needed. But 3 bytes provide to code up to 224 

different instructions, which are redundant. This redundancy can be used to de-
crease some instruction length, especially for that, which code number is much 

Table 4.3 
F1F0 M = 0 M = 1 

0 0 0 B̄·D∨B·D̄ 
0 1 B̄+D+C i B∨D 
1 0 B+D̄+C i B ·D 
1 1 B+D+C i 1 
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less than 216. Such instruc-
tions are two-byte ones. 
The instructions that need 
the RAM address are the 
three-byte instructions. 
The derived instruction 
set is shown in Fig.4.12. 

To simplify the LN, 
which provides the add-
ress transfer from IRG to 
ICTR, this address is 
placed in the second (BY1) 
and third (BY2) bytes. The 
first instruction byte 
(BY0) is used for opcode 
coding (OP). For example, 
the code 11111111 is used 
for coding the instructions 
JMP, IN, OUT, the code 
11111110 is used for JC, etc. In the instruction JC except the RAM address the 
condition code (A CC) is placed. Such condition number is equal to 8 (4 direct and 
4 inverse), and for their coding 3 bits are used, which are placed in positions 5, 6, 
7 of BY1. In the instructions FR, RF these positions are utilized to code the FM 
address, which plays the role in the data transfer. And the transfer direction is 
coded by the zero bit of BY0, i.e. the code 11111101 represents the FR instruction, 
and 11111100 – does RF. 

OP 
BY0 

7 6 5 4 3 2 1 0 
BY1 

   7 6 5 4 3 2 1 0
BY2 

76543210 

JMP 1 1 1 1 1 1 1 1 1 1 1 A RAM 
JC 1 1 1 1 1 1 1 0 A CC A RAM 

FR,RF 1 1 1 1 1 1 0 0/1 A FM A RAM 
IN,OUT 1 1 1 1 1 1 1 1 1 0 0/1 A RAM (A IO) 

0 0 0 0 0 1 
1 0 0 0 1 1 

CO 0 0 1 0 1 
SI 0 0 1 1 1 

 
 

AO 

QO 0 1 0 0 1 
LO 

 
 

AQ 

1 0 0 0 1 

 
 

AB 

 
 

AD 

 
 

F1,
F0

0 1 0 0 0 0 
1 1 0 0 1 0 

CO 1 0 1 0 0 
SI 1 0 1 1 0 

 
 

SH>

QO

 
 

AQ 

1 1 0 0 0 
 Fig.4.12

To distinguish codes of instructions IN, OUT, JMP the positions 7, 6, 5 of the 
byte BY1 have the coding 100, 101, and 111, respectively. Consider that input and 
output are implemented through a fixed register of FM (say, the zero). 
Instructions AO, LO output the codes in LSM, operand addresses AB, AD and result 
address AQ. All these codes have the length of 3 bits. The instruction AO is 
distinguished from LO, that the bit M blocks or unblocks the carry bits in LSM. 
This bit has the position of the 4-th bit in BY0. 

When the instruction AO is implemented, the carry in bit Ci has to be con-
trolled. For example, when the subtraction B – D is calculated, then the addition 
B + D   ̄  + C i is carried out, and the carry in bit has to be C i = 1. And by addition B + 
D this bit is a zero. By the shift left operations the addition B + B = 2B is fulfilled, 
and the bit C i plays the role of the shifted in bit. In general, in the LSB of LSM can 
be put in 0, 1, CO, SI, and QO from CCRG. Therefore, each AO instruction has 5 
types (0, 1, CO, SI, and QO) depending on the bit, which is used as a carry input for 
LSM. These types are coded by the codes 000, 001, 010, 011, 100, respectively, 
which stay in positions 3, 2, 1 of BY0, and code 01 in positions 4 and 0 of BY1 
distinguish the AO code. 

The instruction LO does not afford the code for the carry input, because by the 
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logic operations all the carry bits are blocked. Therefore, LO is distinguished by 
the code 11 in positions 4 and 0 of BY1. 

The right shift operations (SH>) are the single address instructions, because 
the operand Q is loaded from FM, is shifted and is stored in the same register of 
FM. By this process, the MSB is released, and it can be written as 0, 1, CO, SI, or 
QO. Therefore, 5 kinds of this instruction are present. Because according to Table 
4.3, LSM needs two operands, then LSM will translate a single operand, when one 
of the following logic operations is implemented: B ·D or B∨D when B = D. If the 
shifted in bit is coded as well as it is in AO operation, then all the needed coding 
information can be placed in a single byte BY0 (see Fig.4.12). It is important to 
take in consideration by the FSM synthesis, that F0 = F̄1, which selects B ·D or 
B∨D, and AB = AD = AQ. 

The instruction cycle is the period of time, when a single instruction is 
performed. The algorithm of the instruction cycle fulfillment depends on the 
opcode and on the instruction length. Consider the two byte instruction, which 
adds two words from FM. Then the instruction cycle consists of the next steps: 

1) first instruction byte is selected from RAM by the address from ICTR; 
2) this byte is stored in the first byte of IRG, and ICTR is incremented to a 1;  
3) second byte is loaded in IRG as well as the first byte is in steps 1), 2); 
4) operands B and D are selected from FM by the addresses AB and AD, and 

they are transferred to LSM; 
5) result from LSM is stored to FM. 
The next instruction makes the steps 1) – 5) and so on. All these activities are 

controlled and synchronized by the output signals of the FSM. Consider the FSM 
which is built on the PLA cells, which triggers are switched on the rising edge of 
the clock C. Then the waveform diagrams of the control signals in CPU looks like 
ones in Fig.4.13. All the instruction cycles start from the clock cycle T1 (the first 
instruction byte fetching). At this process, the first byte address from ICTR is 
transferred through the input 0 of the multiplexor (because C1 = 0) to the input A 
of RAM. This address selects a byte from the RAM, which is stored to 3-bit wide 
IRG. For the proper CPU operation, these activities should be finished till the 

C 
T1 T2 T3 T4  

JMP C2,C3 C2,C4 C5 C6 M1
JC C2,C3 C2,C4 C5 C6/CC,C2/CC M2
FR C2,C3 C2,C4 C2,C5 C1,C7 M3
RF C2,C3 C2,C4 C2,C5 C1,C8,C10 M4
IN C2,C3 C2,C4 C2,C5 C8,C9 M5

OUT C2,C3 C2,C4 C2,C5 OUT M6
AO,LO C2,C3 C2,C4 C8  M7,8
SH> C2,C3 C8   M9

Fig.4.13 
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cycle T2 beginning. The clock rising edge in T2 strobes this byte storing it in the 
place BY0 of IRG. This is provided by the signal C3 = 1. This edge increments the 
address in ICTR, controlling by the signal C2 = 1. This means that the second byte 
address of the current instruction or the first byte address of the next instruction 
is calculated. This process illustrated by Fig.4.13, where the control signals are 
indicated, which are equal to a 1. 

The next activities depend on the opcode, which is stored in byte BY0. If it is 
the code of the instruction JMP, then in cycles T2 and T3 the second and third 
instruction bytes are selected and fixed in IRG, and in the cycle T4 in ICTR the 
jump address from the instruction field is fixed by the signal C6. 

The instruction JC waveforms are distinguished from JMP waveforms only in 
activities in the cycle T4. If the jump condition is satisfied (i.e. CC = 1) then 
microoperation C6 is implemented, else microoperation C2 is (i.e. ICTR incre-
ment).  

The features of the waveforms for instructions FR and RF are the next 
instruction address forming in cycle T3 (signal C2), address transfer in the RAM in 
cycle T4 (signal C2 in FR and signal C8 in RF). The signal Y0 provides the word 
transfer from the RAM through the input 1 of the multiplexor to the input Q of 
FM. 

In the cycle T4 of the instruction IN, a byte is stored in FM (signal C8) from the 
bus DI (signal C9 provides that). The signal OUT in cycle T4 of the instruction OUT 
tells that the correct data will be set by the next clock edge in the outputs A and 
DO for its output from the CPU.  

Instructions AO and LO are two-byte wide ones, and instruction SH> is one 
byte wide instruction. They are implemented for three and two cycles, and are 
finished by the result storing to FM. 

From the waveform diagrams (Fig.4.13) the decision is followed that the 
control signals Ci (i = 1,…,10) have to be formed according to the following 
equations 

C1 = T4M3∨T4M4; 
C2=T1∨T2M1∨T2M2∨T2M5∨T2M6∨T2M7∨T2M8∨T3M3∨T3M4∨T3M5∨T3M6∨T4M2C̄C; 
C3=T1; 
C4=T2M1∨T2M2∨T2M3∨T2M4∨T2M5∨T2M7∨T2M8; 
C5=T3M1∨T3M2∨T3M3∨T3M4∨T3M5∨T3M6; 
C6=T4M1∨T4M2CC; 
C7=T4M3; 
C8=T2M9∨T3M7∨T4M4∨T4M5∨T3M8; 
C9=T4M5; 
C10=T4M4, 

where Mi (i = 1,…,10) is a decoded opcode, i.e. (see Fig.4.13) 
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M1 = BB07·B06B ·BB05·B04B ·BB03·B02B ·BB01·B00B ·BB17·B16B ·BB15; 
M2 = BB07·B06B ·BB05·B04B ·BB03·B02B ·BB01·B̄00; 
M3 = BB07·B06B ·BB05·B04B ·BB03·B02B ·B̄01·B̄00; 
M4 = BB07·B06B ·BB05·B04B ·BB03·B02B ·B̄01·BB00; 
M5 = BB07·B06B ·BB05·B04B ·BB03·B02B ·BB01·B00B ·BB17·B̄16·B̄15; 
M6 = BB07·B06B ·BB05·B04B ·BB03·B02B ·BB01·B00B ·BB17·B̄16·B15B ; 
M7A = BB04·B̄00;   M7L = B04B ·B̄03·BB00; 
M8 = B̄00·BB04, 

where BBi,j is the j-th bit of the i-th byte of the opcode, M7A and M7L  are decoded 
opcodes of the arithmetic and logic instructions. 

From derived equations and diagrams it is followed, that the FSM contains a 
set of AND gates and OR gates, decoder of opcodes and the clock cycle counter. 
Its network diagram is shown in Fig.4.14. The array of 3x9 AND gates forms the 
products Ti·Mj (i = 2,3,4; j = 1,…,9). The products T1·Mj may not be derived, 
because in the cycle T1 the signals C2 and C3 are generated for any instruction. 
The outputs of AND gates with the indexes i and j are OR-ed in the OR gates 
according to the equations for Ck (k = 1,…,10). It is considered that the products 
T4M2C̄C and T4M2CC are formed in two steps: 1) the condition flag strobe S = T4M2  
is formed, 2) the jump condition signals SC̄C and SCC are formed.   

The analysis of equations Ck shows that they can be minimized, and at this  
cost the logic hardware can be simplified. This is a usual praxis, but then,  
regularity and  visual properties of the FSM block diagram are lost.  
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5. Interfaces 

5.1 Common busses 
The CPUs of first generations were built according to the centralized struc-

ture, in which all the units, like magnetic disc storage, I/O terminals, RAM, were 
attached directly to the CPU, and they have operated under its control. Because 
the speed both of CPU and peripheral units was relatively small, CPU most of its 
time was utilized for the peripheral unit service. The common bus interface was 
introduced at first in the computer PDP-8 in 1965. It has given the units the 
opportunity to operate independently and then to send the data to each other. In 
the common bus system, all the units are connected to a single bus through a 
standardized hardware interface. Each pair of the units including CPU can 
exchange the data. But in a moment only a single data exchange can be executed. 
Therefore, all the units connected to the bus have to obey the common rules of 
data exchange. These rules are named as an interface protocol. To attach a 
new device to the bus, its hardware interface and protocol must satisfy the 
common conditions of the bus. 

The units, attached to the bus, are divided into masters and slaves. The 
master occupies the free bus, activates the data exchange, and releases the bus 
after exchange is done. Any unit can be master, but none couple of masters, or 
none couple of data sources can be active simultaneously. The information from 
the master is transferred to every unit, attached to the bus. The slave accepts the 
information if it needed it. It can transfer the data to the master as well, if the 
master selects this slave.   

The electric circuit of the common bus is usually based on the open collector 
(open drain) buffers or tristate buffers. The open collector bus has a single 
loading resistor, which consumes the energy when the bus is in the low state, and  
which value is high (hundreds and thousands of Ohms). The process of sending a 
1 after a 0 consists in the loading the wire capacitance through the loading 
resistor. Therefore, this process is rather slow, and the open collector bus is a low 
speed bus. The tristate bus has none loading resistor. The opened transistor in 
the tristate buffer serves as such a loading. Because the open transistor resistivity 
is rather small (ones and tenths of Ohms), the capacity loading process is much 
quicker, and such a bus has higher speed. 

The bus wire behaves on the high frequencies as a long electric line. All the 
ends or unhomogenities in it can reflect the signal, generating the noise. To 
prevent this process, the special loadings are attached to the wire ends. These 
provide the input and output impedance, which is equal to the line impedance 
(50–200 Ohms). Many modern ICs, like FPGAs have the I/O buffers with the 
programmed impedance, providing the proper adjustment to the bus line 
impedance. 

The bus speed is optimized by increasing the signal current or by decreasing 
the voltage range of logic levels. Then the bus capacitance can be loaded more 
frequently. The second way is more attractive because of power consumption 
effectiveness. But by this process, the noise magnitude increases comparatively to 
the signal magnitude. To increase the noise immunity, the low voltage dual signal 
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lines (LVDS) are introduced. Such a line consists of a couple of parallel wires, one 
of them transfers positive signal, and another one – does negative signal. The 
signal receiver is built as a comparator of signals in both wires. If a noise is ac-
cepted by wires, it has the equal magnitudes in both of them, and these magnitu-
des are subtracted in the comparator inputs, providing the high noise immunity. 

Often, especially in SOCs, common busses are implemented on the base of 
multiplexers, as shown in Fig.1.21. Here the bus speed achieves its maximum, be-
cause the wire capacitance is minimized. Such a bus architecture will be discus-
sed below. The another speed limit of the common bus is caused by the data edge 
skewing in unhomogeneous parallel busses. This skewing is a root of the data 
synchronization problem, when the data are latched in the bus receiver. To solve 
this problem, the input ports are arranged by the programmed delays, which 
compensate the data skews. It is an opinion, that in the near future the inter-
processor communications will be held using the sequential transfers through a 
single bit width lines, where this problem is absent. In this situation, the only 
solution to route the data flows is the use of multiplexor or switching matrix . 

The bus lines are divided to address bus, data bus, control lines, power lines 
and reserved lines. Address lines transfer the source or destination address. Each 
unit has its own address range and has to distinguish by own if the given address 
belongs to its range. The data bus can be from 8 to 64 bit wide. Some busses like 
AMBA have the wide up to 1024 bits. It serves for the data transfer between the 
units with the given addresses. The control lines serve to point the transaction 
type (read or write), to indicate if the unit is ready to send or receive data or 
interrupt signals, to synchronize units.  

If the bus provides a set of bus masters, a situation can occur when two 
masters try to access the bus simultaneously. To resolve this problem the bus 
arbiter is usually used.  

The busses are distinguished as synchronous and asynchronous ones. Fig.5.1 
illustrates the interaction of a master and a slave in the synchronous bus. The 
master generates clocks C and sends them through a separate line to all the 
slaves. It sets the slave address on the bus AB strobing it by the address acknow-
ledge signal AAK, and then it sends the request signal RRQ for data reading or 
writing.  AAK and RRQ can be combined in time. The slave outputs the data in 
the data bus DB as a response to the master's signals. The synchronous mode in 
this example consists in that, that all the signals have to appear precisely in 
accordance with the common clock signal. If the slave could not output the data 
in time, then it has to activate the line "wait" and deactivate it if the data is ready.  

Fig.5.2 illustrates the interaction of units 
attached to the asynchronous bus. The 
master unit outputs address to the line A and 
the reading request RRQ. The last one is simul-
taneously an acknowledge signal of the add-
ress correctness. The master activity is marked 
as UM. All the slave units, which activity is 
marked as US, decode the address. Only selected 
unit, which address satisfied, outputs the data D Fig.5.1 
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to the bus DB, and it acknowledges the data 
correctness by a signal in the line DAK. This 
signal strobes the data input in the master. 
After data receiving, the master resets the 
signal RRQ signaling that the data is already 
not affordable. By this signal, the slave releases 
the bus, setting it in the state of the high 
impedance, and it resets the signal DAK. It 
shows that the reading transaction is finished.  

Comparing synchronous and asynchronous 
busses, we can assign the simplicity of the 
synchronous bus, and the flexibility of the asyn-
chronous bus, which helps to devices with different speeds to operate together.  

 valid D

reading 

address 
decoding

D output 

Fig.5.2 

In the previous examples, the data transfer is performed by a single word and 
it consists of two steps: address set and data transfer. Such a transfer mode slows 
down the data array transfer, which is often used, for example, in the data 
exchange between DRAM and NVRAM. To speed up such transactions, many 
busses implement the block data transfer, in that the first word address is 
followed by the block data length. Because the neighboring word addresses in the 
block are different in a 1, both master and slave automatically form them using 
the built-in counters. Such counters are named as direct memory access (DMA) 
counters, and units, which provide the block transfer, are named as DMA units. 
As a result, a single word transfer is decreased in the time of address setting, its 
decoding and acknowledgement.  

5.2 AMBA interface in SOC design 
A new approach to SOC designs is the use of platform technology. The 

platform is a standard flexible integral architecture, which general properties 
have to be not exchanged for several years. The platforms can be implemented 
both in ASICs and in FPGAs. These platforms have libraries that contain pre-
designed and pre-verified intellectual property (IP) cores. An IP core is a docu-
mented project of a module, which can be adapted to the customer needs when it 
is customized in the SOC. Users can mix-and-match the functional IP core from 
the library to assist in design of the SOC. To connect IP cores together succes-
sfully, they have to be arranged with the standardized interfaces and communi-
cate with a particular bus protocol. Below the AMBA interface is described as a 
bright representative of on-chip busses, which are widely used in the SOC design. 

The ARM processor is a most widely used RISC architecture built in the SOC. 
The ARM processor is provided with the AMBA bus, which is an open speci-
fication from the ARM corporation. This bus can be used not only with the ARM 
CPU but also with another CPU cores and application specific devices. The pro-
perties of the AMBA bus are similar to ones of another standard busses like IBM 
CoreConnect bus, Altera Avalon bus, VSIA Virtual Component Interface, and 
others. In the AMBA bus architecture there are three distinctive busses: 
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advanced system bus (ASB), advanced peripheral bus (APB), and advanced high-
performance bus, called the AHB.  

Several masters and slaves can be connected to the AHB, but at a time only 
one master is allowed access. The master to be allowed access is selected by an 
arbiter. The AHB-APB bus bridge serves as a slave on the AHB, and the only 
master in the APB. The various low performance peripherals on the APB serve as 
the APB slaves. ASB is an alternative system bus suitable for use where the high-
performance features of AHB are not required. Below the AHB is considered, 
which shows the main properties of the AMBA bus. Its signals are the following: 

HCLK – bus clock. All signal timings are related to the rising edge of HCLK; 
HRESETn – bus reset signal, is active low and is used to reset the system; 
HADDR[31:0] – 32-bit system address bus, which is given by the master; 
HTRANS[1:0] – transfer type. Master indicates the type of the current trans-

fer, which can be Nonsequential (code 10), Sequential (code 11), Idle (code 00) or 
Busy (code 01); 

HWRITE – transfer direction, when high, master indicates a write transfer 
and when low – a read transfer; 

HSIZE[2:0] – transfer size, master indicates the size of the transfer, which is 
typically byte (code 000), halfword (code 001) or word (code 010). The protocol 
allows for larger transfer sizes up to a maximum of 1024 bits; 

HBURST[2:0] – burst type, master indicates if the transfer forms part of a 
burst. Four, eight and sixteen beat bursts are supported and the burst may be 
either incrementing or wrapping; 

HPROT[3:0] – protection control, master provides additional information 
about a bus access, which intended for use by any module that wishes to 
implement some level of protection. The signals indicate if the transfer is an 
opcode  fetch or data access (HPROT[0] = 0 or 1), as well as if the transfer is a 
privileged mode access or user mode access (HPROT[1] = 1 or 0). For bus 
masters with a memory management unit these signals also indicate whether the 
current access is cacheable (HPROT[3] = 1) or bufferable (HPROT[2] = 1); 

HWDATA[31:0] – write data bus. It is used to transfer data from the master 
to the slaves during write operations. Minimum data bus width of 32 bits is 
recommended. However, this may easily be extended up to 1024; 

HSELx – slave select. Decoder each AHB slave has its own slave select signal 
and this signal indicates that the current transfer is intended for the selected 
slave. This signal is simply a combinatorial decode of the address bus; 

HRDATA[31:0] – read data bus. It is used to transfer data from bus slaves to 
the bus master during read operations; 

HREADY – transfer done. When high, slave indicates that transfer has 
finished on the bus. This signal may be driven low to extend a transfer; 

HRESP[1:0] – transfer response. Slave provides additional information on 
the status of a transfer. Four different responses are provided, Okay, Error, Retry 
and Split (HRESP = 00, 01, 10 and 11, respectively); 

HBUSREQx – bus request. Master x signales to the bus arbiter that it 
requires the bus. There is such an signal for each bus master in the system; 
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HLOCKx –locked transfers. When high, master indicates that it requires 
locked access to the bus and no other master should be granted the bus until this 
signal is low; 

HGRANTx – bus grant. By this signal the arbiter indicates that bus master x 
is currently the highest priority master. Ownership of the address or  control 
signals changes at the end of a transfer when HREADY is high, so a master gets 
access when both HREADY and HGRANTx are high; 

HMASTER[3:0] – master number. These signals from the arbiter indicate 
which bus master is currently performing a transfer and is used by the slaves, 
which support split transfers to determine which master is attempting an access; 

HMASTLOCK – locked sequence. Arbiter indicates that the current master is 
performing a locked sequence of transfers; 

HSPLITx[15:0] – split completion request. This 16-bit split bus is used by a 
slave to indicate to the arbiter which bus masters should be allowed to re-attempt 
a split transaction. Each bit of this split bus corresponds to a single bus master. 

Some bus lines can be absent, if needed. For example those, which support 
the split transfers, can be removed.   

The AMBA AHB bus protocol is designed for the use with a central multi-
plexor interconnection scheme. All bus masters drive out the address and control 
signals indicating the transfer they wish to perform and the arbiter determines 
which master has its address and control signals routed to all of the slaves. A 
central decoder is also required to control the read data and response signal 
multiplexor, which selects the appropriate signals from the slave that is involved 
in the transfer. Fig.5.3 illustrates the structure required to implement an AHB 
design with two masters and two slaves. The multiplexor MUXA selects address 
and control information from the masters to the slaves, the multiplexers 
MUXDW and MUXDR transfer the data when writing and reading, respectively. 

All transfers must be aligned to the address boundary equal to the size of the 
transfer. For example, word transfers must be aligned to word address boun-

daries (that is A[1:0] = 00). For 
transfers that are narrower than the 
width of the bus, for example a 16-bit 
or 8-bit transfer on a 32-bit bus, then 
the bus master only has to drive the 
appropriate byte lanes (upper or 
lower halfword, 3-th,…, or 0-d byte). 
The slave is responsible for selecting 
the data from the correct lanes. 

Fig.5.3 
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The AMBA protocol allows burst 
transfers by a master which has been 
granted bus access. The individual 
transfers within a burst are called as 
beats. Four, eight and sixteen-beat 
bursts are defined in the AMBA AHB 
protocol (HBURST = 010,…,111), as 
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well as undefined-length bursts (HBURST = 001) and single transfers (HBURST 
= 000). Both incrementing and wrapping bursts are supported in the protocol. 
Incrementing bursts access sequential locations and the address of each 
transfer in the burst is just an increment of the previous address. For wrapping 
bursts, if the start address of the transfer is not aligned to the total number of 
bytes in the burst (sizexbeats) then the address of the transfers in the burst will 
wrap when the boundary is reached. For example, if the start address of the 
transfer is 0x34, then it consists of four transfers to addresses 0x34, 0x38, 0x3C 
and 0x30. Bursts must not cross a 1kB address boundary. The first beat of the 
burst transfer has to be of Nonsequential type, and the others – of Sequential 
type. 

The address and data of the different beats in a single burst are transferred in 
a pipelined fashion. A write burst which writes data D1, D2, D3 to addresses A1, 
A2, A3 respectively is shown in Fig.5.4. Note that data Di and address Ai+1 are 
transmitted in the same clock cycle on the HADDR and HWDATA lines. Thus the 
address and data phases of consecutive beats within a burst can overlap.  

The protocol allows a slave to insert wait 
cycles by deasserting a HREADY signal if 
the slave is not ready to service a transfer. 
This extends the data phase of a transfer. 
Due to the pipelined nature of the bus, the 
address phase of the next transfer also has 
to be extended. Fig.5.5 shows the writing of 

D1, D2, D3 to addresses A1, A2, A3 with 
the insertion of a single wait cycle in the 
transfer of D2. 

Fig.5.4 
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In order to prevent an excessive 
number of wait cycles, the protocol 
allows the release of bus access to the 
other masters. This is co-ordinated by 
the slave which either informs the arbiter 
of its temporary inability to service a 

master (a Split response) or informs the master to retry the transfer (a Retry 
response). The provision of split transfers, that is, temporarily suspending a 
transfer and resuming it later when the slave is ready, raises many important 
questions. The pipelined nature of the AMBA bus further complicates the 
situation.  
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Fig.5.5 

The AHB protocol specifies a certain behaviour that must be respected. 
Firstly, the master must perform pipelined accesses: every transaction must be 
performed in two phases. First comes an address phase during which the 
address and control signals are driven. At the end of this phase, the slave selected 
by the address samples the address and control signals and begins its response 
during the data phase. The response includes the driving of certain control 
signals and either the emission of the read data or the sampling of the write data 
at the end of the cycle. This rule is referred to as the Pipeline rule. 

Then the slave can drive HREADY low to stretch the length of a bus cycle. The 
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master must be able to stall its execution to respect the slave's request. This is the 
Stretch rule. The AHB protocol also has provisions for several bus masters: only 
one master can have access to the slaves at a given time. All of the other masters 
must wait until the bus is assigned to them. This is the Arbitration rule. 

Several accesses must be made in an uninterrupted, or atomic, fashion. The 
AHB protocol offers the possibility of performing locked access sequences, that 
the arbiter cannot interrupt to grant the bus to another master. Before the first 
address phase, the master must warn the system that the locked transfers are 
about to begin by asserting the HLOCK signal. The signal must be de-asserted 
during the address phase of the last access. This is the Lock rule. 

Finally, a slave can issue various responses to a master's request. The Error 
response indicates that the access has failed. The Retry and Split responses must 
be handled in a special way: every clock cycle, the master must observe the status 
of HRESP. If one of the two aforementioned responses is given, then the master 
must immediately drive the Idle value on its HTRANS output. This cancels the 
address phase that followed the one that caused the response. On the following 
bus cycle, the master must retry the access that had caused the unusual response. 
This rule is referred to as the Exception rule.  

Consider the design of the master core, which has to be attached to the CPU 
for the AMBA interface communication, so called, wrapper. The master FSM 
provides the fulfilment of the interface protocol. The first step is to set up an FSM 
initial state that respects the pipeline rule. The FSM diagram contains a single 
step over the node RUN. Events or assignments that must occur at every bus 
cycle can be performed on transition (1), which goes back to this node. The next 
step is to include the Stretch requirement. The core must be stalled during the 
extra clock cycles of the bus cycle, waiting on the resuming the process at every 
cycle. Consider the core has a static design, then it is possible to stall it by 
modulating the clock signal (i.e. stopping it at strategic moments). Fig.5.6 shows 
a FSM state graph that can 
handle bus cycle stretching: if 
HREADY=0 at the end of a 
cycle, the state becomes 
NOT_READY, and the core's 
clock is stalled (transition 2). 
The FSM stays in the 
NOT_READY state (3) until 
HREADY = 1 (4).   

Fig.5.7 
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The next requirement to 
implement is the Arbitration. 
A master should not attempt 
any access without first ma-
king sure that the bus belongs 
to it. If the bus is granted to 
another master, it must wait. A 
maser that loses the bus has a 
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final bus cycle in which it can accomplish its data phase while another master 
prepares its address phase. Fig.5.7 shows the new states that implement the 
Arbitration rule. 

Here, if the master notices that it is losing the bus (HGRANT = 0), then it 
enters the RUN_LAST state (transition 5 or 5a), in which it completes its data 
phase and prepares the address phase for the time when the bus will be given 
back to it. At the end of the bus cycle, the FSM enters the HOLD state, where the 
core's clock is inhibited in order to keep the address from changing again. The 
master must sample the incoming data on the transitions (6) and (9) and "feed" 
it to the CPU when the clock will be released. Once the bus is finally given back to 
the master, the core enters the RUN_FIRST state (7). The clock is still inhibited 
here, to keep the core's address from changing on entry. The address that was 
prepared during RUN_LAST finally becomes visible on the bus and the 
transaction can finally take place. The master stays in the RUN_FIRST state until 
the end of the address phase (i.e. a bus cycle), where it returns to the RUN state 
(8). There are also transitions that are taken if the arbiter grants the bus 
immediately after taking it away (9) or vice-versa (10). 

A wrapper requiring the Lock requirement usually has a signal that allows it 
to indicate that it is beginning a locked sequence. This signal, say MLOCK, can 
usually be driven to the AHB signal HLOCK. HLOCK must be asserted on the bus 
cycle that precedes the first address phase of the locked sequence, and to be de-
asserted during the last address phase. MLOCK may be asserted or deasserted 
earlier or later. If it is asserted or de-asserted early, it is possible to delay it in the 
RUN state. If it is de-asserted late, the bus is locked for an extra cycle. The 
problem is the situation where MLOCK is asserted late (i.e. in the same time as 
the first address phase of the locked sequence). Then, the core must be delayed 
by one bus cycle in order to allow the arbiter of the bus to become aware of the 
change on HLOCK. Fig.5.8 shows the resulting FSM graph that allows this. 

When MLOCK= 1 the master goes into the LOCK_FIRST state on the next 
bus cycle (transition 11). This state sets a flag and stalls the core for one bus cycle 
(by inhibiting the clock) before returning to the RUN state (12). With the flag 
activated, the master don’t return to the LOCK_FIRST state, but must check at 
every bus cycle (1) to determine if it must deactivate the flag (CORELOCK = 0).  

Stalling the core causes a problem on the AHB bus: the access that caused the 
transition to LOCK_FIRST appears as two identical accesses on the bus. The 
master must thus disable one of the "two" accesses by driving HTRANS = IDLE. 
It makes more sense to disable the first access than the second, so there must be 
another condition in the RUN state that detects (CORELOCK = 1 and 
LOCK_FLAG = 0) and drives HTRANS = IDLE if the condition is true.  

The final requirement to observe is the Exception rule. During the data phase 
of an access, the slave can indicate an error or an exceptional situation by using 
the HRESP signal. The master usually has to perform the task itself, hiding the 
details of the procedure from the CPU. In order to handle the exception 
transparently, the master has to halt the CPU immediately after the address 
phase that caused the faulty response. The CPU remains blocked until the 
exception is handled. Fig.5.8 shows how the control unit handles the exceptions. 
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List of abbreviations 
 
ALU arithmetic and logic unit 
ASIC  application specific 

integral circuit 
ASSP  application specific 

standard product 
BF  Boolean function 
CAD  computer-aided design 
CD  encoder 
CISC  complex instruction set 

computer 
CMOS  complementary metal-

oxid-semiconductor 
CI  carry in bit 
CO  carry out bit 
CPLD  complex programable logic 

device 
CPU  central processing unit 
CTR,CTn counter, counter modulo n 
CU  control unit 
DC  decoder 
DFF  D-type flip-flop 
DRAM  dynamic RAM 
DSP  digital signal processing 
EEPROM electrically erasable PROM 
FA  full adder  
FET  field effect transistor 
FIFO  first in–first out–type stack  
FF  flip-flop 
FM  fast memory, register array 
FPGA  field programmable gate 

arrays 
FPM  fast page mode 
FRAM  ferroelectric RAM  
FSM  finite state machine 
HA  half adder 
HDL  hardware description language 
IC  integral circuit 
ICTR  instruction counter, the 

same as PC 

IFN  instruction fetch network 
IRG  instruction register 
KM  Karnaugh map 
LC  logic cell 
LE  logic element 
LED  light emitting diode 
LN  logic network 
LRU  least recently used 
LSI  large scale integration 
LSM  multipurpose summator, 

ALU 
LSB  least significant bit or byte 
LUT  look-up table 
MNOS  metal-nitrogenium-oxid-

semiconductor 
MPC  microprogram controller  
MPU  multiply unit  
MSB  most significant bit or byte 
MU  memory unit 
MUX  multiplexor 
NVRAM non-volatile RAM 
PC  program counter  
PLA  programmable logic array 
PROM  programmable ROM 
RAM  random access memory 
RG  register 
RISC  reduced instruction set 

computer 
ROM  read only memory 
SDRAM  synchronous DRAM 
SHU  shifter unit 
SM  adder, summator 
SOC  system-on-the-chip 
SRAM  static RAM 
TTL  transistor-transistor logic 
WD  Waych diagram 
WE  writing enable 
XOR  exclusive OR
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